

Department of Electrical & Electronics Engineering

Course Title: _____HVDC Transmission_____

Following documents are available in Course File.

S.No.	Points	Yes	No
1	Institute and Department Vision and Mission Statements		
2	PEO & PO Mapping	\checkmark	
3	Academic Calendar	\checkmark	
4	Subject Allocation Sheet	\checkmark	
5	Class Time Table, Individual Timetable (Single Sheet)	\checkmark	
6	Syllabus Copy	\checkmark	
7	Course Handout	\checkmark	
8	CO-PO Mapping	\checkmark	
9	CO-Cognitive Level Mapping	\checkmark	
10	Lecture Notes	\checkmark	
11	Tutorial Sheets With Solution	\checkmark	
12	Soft Copy of Notes/Ppt/Slides	\checkmark	
13	Sessional Question Paper and Scheme of Evaluation	\checkmark	
14	Best, Average and Weak Answer Scripts for Each Sessional Exam. (Photocopies)		
15	Assignment Questions and Solutions	\checkmark	
16	Previous University Question Papers	\checkmark	
17	Result Analysis	\checkmark	
18	Feedback From Students		
19	Course Exit Survey		\checkmark
20	CO Attainment for All Mids.		
21	Remedial Action.		\checkmark

Course Instructor / Course Coordinator (Name)

Course Instructor / Course Coordinator (Signature)

Department/Program-EEE

VISION OF THE INSTITUTE:

To be among the best of the institutions for engineers and technologists with attitudes, skills and knowledge and to become an epicenter of creative solutions.

MISSION OF THE INSTITUTE:

To achieve and impart quality education with an emphasis on practical skills and social relevance.

MISSION OF THE PROGRAM:

- To become an internationally leading department for higher learning.
- To build upon the culture and values of universal science and contemporary education.
- To be a center of research and education generating knowledge and technologies which lay groundwork in shaping the future in the fields of electrical and electronics engineering.
- To develop partnership with industrial, R&D and government agencies and actively participate in conferences, technical and community activities.

Department of Electrical & Electronics Engineering

Programme Educational Objectives (B.Tech. – EEE)

This programme is meant to prepare our students to professionally thrive and to lead. During their progression:

Graduates will be able to

- PEO 1: Have a successful technical or professional careers, including supportive and leadership roles on multidisciplinary teams.
- PEO 2: Acquire, use and develop skills as required for effective professional practices.
- PEO 3: Able to attain holistic education that is an essential prerequisite for being a responsible member of society.
- PEO 4: Engage in life-long learning, to remain abreast in their profession and be leaders in our technologically vibrant society.

Programme Outcomes (B.Tech. – EEE)

At the end of the Programme, a graduate will have the ability to

- PO 1: Apply knowledge of mathematics, science, and engineering.
- PO 2: Design and conduct experiments, as well as to analyze and interpret data.
- PO 3: Design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- PO 4: Function on multi-disciplinary teams.
- PO 5: Identify, formulates, and solves engineering problems.
- PO 6: Understanding of professional and ethical responsibility.
- PO 7: Communicate effectively.
- PO 8: Broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
- PO 9: Recognition of the need for, and an ability to engage in life-long learning.
- PO 10: Knowledge of contemporary issues.
- PO 11: Utilize experimental, statistical and computational methods and tools necessary for engineering practice.
- PO 12: Demonstrate an ability to design electrical and electronic circuits, power electronics, power systems; electrical machines analyze and interpret data and also an ability to design digital and analog systems and programming them.

Programme Educational		Programme Outcomes (POs)										
Objectives (PEOs)	1	2	3	4	5	6	7	8	9	10	11	12
1	М	Μ	-	-	Н	-	-	Η	Н	-	Н	Н
2	-	-	Μ	Μ	Η	Η	Η	-	-	-	-	Н
3	-	-	-	-	Η	Η	М	Μ	Μ	М	Н	Н
4	-	-	-	Μ	М	Η	М	Η	Н	-	М	Н

PEOs & POs Mapping

* H: Strongly Correlating (3); M: Moderately Correlating (2)& L: Weakly Correlating (1)

ACADEMIC CALENDAR Academic Year 2018-19

S. No.	EVENT	PERIOD	DURATION
1	1 st Spell of Instructions	02-07-2018 to 01-09-2018	9 Weeks
2	1 st Mid-term Examinations	03-09-2018 to 05-09-2018	3 Days
3	2 nd Spell of Instructions	06-09-2018 to 24-10-2018	7 Weeks
4	2 nd Mid-term Examinations	25-10-2018 to 27-10-2018	3 Days
5	Preparation	29-10-2018 to 06-11-2018	1 Week 3 Days
6	End Semester Examinations (Theory/	08-11-2018 to 08-12-2018	4 Weeks 3 Days
	Practicals) Regular/Supplementary		
7	Commencement of Second Semester,	10-12-2018	
	A.Y 2018-19		

Dean of Academic Affairs

Department of Electrical & Electronics Engineering

SUBJECT ALLOCATION SHEET

II YEAR(GR17)	Section-A	Section-B		
Special Functions and Complex Variable	Dr GS	Dr GS		
Electromagnetic Fields	SN	SN		
Network Theory	MS	MS		
DC Machines and Transformers	Dr BPB	Dr BPB		
Computer Organization	PRK	PRK		
DC Machines Lab	MP/DSR	PRK/DSR		
Electrical Networks Lab	YSV/GBR	YSV/GBR		
Electrical Simulation Lab	GSR/PS	GSR/PS		
Environmental Science				
III YEAR (GR15)	Section-A	Section-B		
Power Transmission System	VVRR/MP	VVRR/MP		
Microcontrollers	РК	РК		
Power Electronics	Dr TSK	DKK		
Electrical Measurements& Instrumentation (PE-1)	UVL	UVL		
Solar & Wind Energy Systems (OE-1)	PSVD/Dr JP	PSVD/Dr JP		
Sensors/Measurements& Instrumentation Lab	PSVD/PS	UVL/PS		
Power Electronics Lab	PPK/MRE	SN/MRE		
Microcontrollers Lab	RAK/DKK	PK/DKK		
IV YEAR(GR15)	Section-A	Section-B		
Power Semiconductor Drives	YSV	Dr DGP		
Power System Operation & Control	Dr JSD	Dr JSD		
High Voltage DC Transmission Systems	MRE	Dr SVJK		
Electrical Distribution Systems (PE-3)	VVSM			
High Voltage Engineering (PE-3)	VUR			
Soft Computing Techniques (OE-3)	RAK	RAK		
DSP based Electrical Lab	AVK/DKK	AVK/DKK		
		VVSM /		
Power Systems Simulation Lab	VVSM / GSR	GSR		
Power Electronic Drives Lab	MP/GBR	MP/GBR		
I/I BEE(AICTE)	A/B	C/D/E		
BEE	ML			
BEE	KS MK			
BEE	MVK			
BEE	MNSR			
Civil II/I (GR15)	A	В		
ET	РРК	РРК		

AY: 2018-2019

TIME TABLE

GRIET/PRIN/06/G/01/18-19 B.Tech - EEE - A

Day/Hour	10:00- 10:50	10:50- 11:40	11:40- 12:30	12:30- 1:00	1:00- 1:45	1:45- 2:30	2:30-3:15	3:15-4:00	Ro	om No.
MONDAY	HVDCT	PSD	PSD				b / DSP Lab 1 /A2		Theory	4502
TUESDAY	SCT	SCT	EDS/HV E				b / PSS Lab 1 /A2		Lab	DSP Lab-4508 PSS Lab- 4504
WEDNESDAY	EDS/HVE	SCT	SCT	BR			b / PED Lab 1 /A2		Lab	PED Lab- 4407
THURSDAY	EDS/HVE	PSOC	PSOC	BREAK	PSD	PSD	HVDCT	HVDCT		
FRIDAY	HVDCT	HVDC T	EDS/HV E		PSOC	PSOC	SCT	SCT	Class Incharge:	P Praveen Kumar
SATURDAY	HVDCT	EDS/H VE	EDS/HV E		PSOC	PSOC	PSD	PSD		- · ·
Subject Code	Subject Code Subject Name			Faculty Code	Faculty name				Almanac	
GR15A4022	Power Ser	niconducto	or Drives	YSV	Y Satya Vani 1 st Spell o			1 st Spell of In	structions	02-07-2018 to 01-09-2018
GR15A4023		stem Ope Control	ration &	Dr JSD		Dr J Sridevi 1 st Mid-		1 st Mid-term E	Examinations	03-09-2018 to 05-09-2018
GR15A4024	High Voltag	je DC Trar Systems	nsmission	MRE		M Rekha		2 nd Spell of In	structions	06-09-2018 to 24-10-2018
GR15A4026	Electrical D	istribution	Systems	VVSM		VVS Madhu	ıri	2 nd Mid-term	Examinations	25-10-2018 to 27-10-2018
GR15A4147	High Vol	tage Engir	neering	VUR		V Usharan	i	Preparation		29-10-2018 to 06-11-2018
GR15A4148	Soft Computing Techniques (OE-3)			RAK	R Anil Kumar		End Semester Examinations (Theory/ Practicals) Regular / Supplementary		08-11-2018 to 08-12-2018	
GR15A4027	DSP based Electrical Lab		AVK/DK K	A Vinay Kumar / D Karuna Kumar		Commencem Semester, A.	ent of Second Y	10/12/2018		
GR15A4028	Power Syst	ems Simu	lation Lab	GSR/VV SM	G Sandhya Rani/ VVS Madhuri					
GR15A4029	Power Ele	ctronic Dr	ives Lab	MP/GBR	M Prashanth/ G Bhaskar Rao					

wef: 02 July 2018 IV Year - I Semester

HOD

Co-ordinator

DAA

Department of Electrical & Electronics Engineering

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

GRIET/PRIN/06/G/01/18-19

B.Tech - EEE - B	B.Tech - EEE - B IV Year - I Semester										
Day/Hour	10:00- 10:50	10:50- 11:40	11:40- 12:30	12:30- 1:00	1:00- 1:45	1:45- 2:30	2:30-3:15	3:15-4:00	Room No.		
MONDAY	SCT	SCT	PSOC		HVDCT	HVDCT	PSD	PSD	Theory	4512	
TUESDAY	PSD	PSD	EDS/HV E		SCT	SCT	PSD	PSD		DSP Lab-4508	
WEDNESDAY	EDS/HVE	HVDC T	HVDCT	BR	PSOC	PSOC	SCT	SCT	Lab	PSS Lab- 4504 PED Lab- 4407	
THURSDAY	EDS/HVE	HVDC T	HVDCT	BREAK			b / DSP Lab 31 /B2				
FRIDAY	PSOC	PSOC	EDS/HV E	-			b / PED Lab 31 /B2		Class Incharge:	P Praveen Kumar	
SATURDAY	PSOC	EDS/H VE	EDS/HV E				b / PSS Lab 31 /B2				
Subject Code	Su	bject Nam	е	Faculty Code	Faculty name Almanac						
GR15A4022	Power Ser	niconducto	or Drives	Dr DGP	Dr D G Padhan 1 st Spel		1 st Spell of Ins	structions	02-07-2018 to 01-09-2018		
GR15A4023	Power Sy	stem Ope Control	ration &	Dr JSD		Dr J Sridev	/i	1 st Mid-term E	xaminations	03-09-2018 to 05-09-2018	
GR15A4024	High Voltag	je DC Trai Systems	nsmission	Dr SVJK	Dr S	V Jayaram	Kumar	2 nd Spell of Ins	structions	06-09-2018 to 24-10-2018	
GR15A4026	Electrical D		Systems	VVSM		VVS Madhu	ıri	2 nd Mid-term E	Examinations	25-10-2018 to 27-10-2018	
GR15A4147	High Voltag	je Enginee	ering (PE)	VUR		V Usharan	i	Preparation		29-10-2018 to 06-11-2018	
GR15A4148	Soft Computing Techniques (OE-3)		RAK	R Anil Kumar		End Semester Examinations		08-11-2018 to			
GR15A4027	DSP bas	ed Electric	cal Lab	AVK/DK K	A Vinay Kumar / D Karuna Kumar Supplementary		08-12-2018				
GR15A4028	Power Syst	ems Simu	lation Lab	GSR/VV SM	G Sandhya Rani/ VVS Madhuri Commencement of Second Semester, A.Y					10/12/2018	
GR15A4029	Power Ele	ctronic Dr	ives Lab	MP/GBR	M Prasl	hanth/ G Bha	askar Rao				

HOD

Co-ordinator

DAA

wef: 02 July 2018

Department of Electrical & Electronics Engineering

Syllabus – HVDC TRANSMISSION

UNIT-I

HVDC TRANSMISSION: Introduction, equipment required for HVDC systems, Comparison of AC and DC Transmission, Limitations of HVDC transmission lines, reliability of HVDC systems, comparison of HVDC link with EHVAC link, HVDC convertors, HVDC –VSC transmission System: VSC system components, Control of Active and reactive power, Applications of VSC systems.

UNIT-II

HVDC CONVERTER OPERATION AND ANALYSIS: Thyristors and their characteristics, silicon rectifier, 6 pulse convertor configuration, ideal communication process without gate control, DC output voltage , gate control of valves, analysis of voltage wave forms with overlap angle, analysis of communication circuits , equivalent circuit of rectifier, Inverter operation with overlap, Equivalent circuit of inverter , complete equivalent circuit of HVDC link, power factor and reactive power of converters

UNIT-III

HVDC CONVERTER CONTROL :AC transmission and its control, necessary of dc link control, rectifier control, inverter control, constant beta control, constant gamma control, compounding of rectifiers, current compounding of inverter, complete HVDC system characteristics, power reversal in DC link, voltage dependent current order limit(VDCOL), system control hierarchy, individual phase control, cosine control of phase delay, linear control phase delay, equidistance pulse control, pulse frequency control, constant current control

UNIT-IV

HARMONICS IN HVDC SYSTEM: Harmonics due to converter , characteristic current harmonics in the 12 pulse converter , harmonic model and equivalent circuit ,design of AC filters , single tune and double tuned high pass filters , second order filters and C-Type filter, Reactive power considerations of AC filters

UNIT-V

FAULTS ON AC SIDE OF CONVERTER STATION: 3-phase symmetrical fault and asymmetrical faults, commutation failure, DC circuit breaker, Ground Electrodes for HVDC system: Advantage and problems with ground return, HVDC system grounding, Resistance of electrodes- Electric current field, resistance of electrodes in uniform earth and non-uniform earth, distribution of current field between electrodes.

TEXT BOOKS:

1. HVDC transmission by S Kamakshaiah and V Kamaraju, Tata McGraw Hills Publications.

REFERENCE BOOKS:

1. K.R.Padiyar., HVDC Power Transmission System(English) 2nd edition. 2. Arillaga., High Voltage Direct Transmission,(London)Peter Peregrinus, 1981.

GUIDELINES TO STUDY THE COURSE/SUBJECT

Academic Year : 2018-2019

Semester : I

Name of the Program:....EEE...... B.Tech...... Section:A/B

Course/Subject: HVDC.....

Name of the Faculty: Dr.S.V.JAYARAM KUMAR, M.REKHA Code...GR15A4024.....

Dept.:EEE.....

Designation: Professor, Asst.Professor

Guidelines to study the Course/ Subject: HVDC TRANSMISSION

Course Design and Delivery System (CDD):

- The Course syllabus is written into number of learning objectives and outcomes.
- These learning objectives and outcomes will be achieved through lectures, assessments, assignments, experiments in the laboratory, projects, seminars, presentations, etc.
- Every student will be given an assessment plan, criteria for assessment, scheme of evaluation and grading method.
- The Learning Process will be carried out through assessments of Knowledge, Skills and Attitude by various methods and the students will be given guidance to refer to the text books, reference books, journals, etc.

The faculty be able to –

- Understand the principles of Learning
- Understand the psychology of students
- Develop instructional objectives for a given topic
- Prepare course, unit and lesson plans
- Understand different methods of teaching and learning
- Use appropriate teaching and learning aids
- Plan and deliver lectures effectively
- Provide feedback to students using various methods of Assessments and tools of Evaluation
- Act as a guide, advisor, counselor, facilitator, motivator and not just as a teacher alone

Department of Electrical & Electronics Engineering

Section:A/B

..Code:...GR15A4024.....

COURSE SCHEDULE

 Academic Year
 : 2018-2019

 Semester
 : I

 Name of the Program:.....EEE...... B.Tech......

 Course/Subject:
 ...HVDC TRANSMISSION.......

 Name of the Faculty: Dr.S.V.JAYARAM KUMAR

 M.REKHA

 Designation: Professor, Professor, Asst.Professor

The Schedule for the whole Course / Subject is:

		Total No. of
UNIT	Description	periods
1.	HVDC TRANSMISSION	10
2.	HVDC CONVERTER OPERATION AND ANALYSIS.	8
3.	HVDC CONVERTER CONTROL	8
4.	HARMONICS IN HVDC SYSTEM:	8
5.		10
	FAULTS ON AC SIDE OF CONVERTER STATION.	

Total No. of Instructional periods available for the course:42......Hours / Periods

Department of Electrical & Electronics Engineering

SCHEDULE OF INSTRUCTIONS COURSEPLAN

Academic Year : 2018-2019

Semester

Name of the program :.....EEE..... B.Tech..... Section: A/B

: I

Course/Subject:HVDC TRANSMISSION Code:...GR15A4024 Dept: EEE

TEXT BOOKS:

1. HVDC transmission by S Kamakshaiah and V Kamaraju, Tata McGraw Hills Publications.

REFERENCE BOOKS:

1. K.R.Padiyar., HVDC Power Transmission System(English) 2nd edition. 2. Arillaga., High Voltage Direct Transmission,(London)Peter Peregrinus, 1981.

		No. of		Objectives &	References
Unit	Lesson	Periods	Topics / Sub-Topics	Outcomes	(Text Book,
No.	No.				Journal)
				Nos.	Page Nos.:to
1	1.	1	Introduction	1&1	T1:1
			Equipment required for HVDC		
1	2.	1	systems	1&1	T1:13
	_		Comparison of AC and DC		
1	3.	1	Transmission	1&1	T1:17
	4		Limitations of HVDC transmission	101	
1	4.	1	lines	1&1	T1:28
1	5.	1	Reliability of HVDC systems	1&1	T1:28
1	З.	1		1&1	11.20
1	6	1	comparison of HVDC link with EHVAC link	1&2	T1:31
1	0	1	HVDC convertors, HVDC –VSC	102	11.51
1	7.	1	transmission	1&2	T1:31
		-			
1	8.	1	System: VSC system components	2&2	T1:31
			Control of Active and reactive		T1:34
1	9.	1	power, Applications of VSC systems	2&3	
					T 1 (0
2	10	2	Thyristors and their characteristics	2&3	T1:40
			Silicon rectifiers IGBT's ,HVDC		
			voltage source converters principle		TT1 40
2	11.	1	and operation	2&3	T1:42

Department of Electrical & Electronics Engineering

			6 pulse convertor configuration, ideal		
			communication process without gate control		
2	12.	1	communication process without gate control	3&1	T1:62
2	12.	1		5001	11.02
			DC output voltage , gate control of valves		
2	13.	1	· · · · · · · · · · · · · · · · · · ·	3&2	T1:71
2	15.	1	analysis of voltage wave forms with overlap angle, analysis of communication circuits	3&3	T1:81
2	15.	1		5005	11.01
			equivalent circuit of rectifier, Inverter		T1:94
2	16.	1	operation with overlap	3&2	
			Equivalent circuit of inverter, complete		T1:94
2	17.	1	equivalent circuit of HVDC link	1&3	
			power factor and reactive power of converters,		T1:97
	1		analysis of 12 pulse converter		
2	18.	1		1&3	
			power flow in HVDC links, Power flow and		
2	19.	1	current control, power loss in DC systems	1&3	T1:103
			operation and analysis of VSC converters,		
2	20	1	VSC inverter operation, power flow in VSC-	100	T1.10C
2	20	1	DC transmission	1&3	T1:106
2	21	2	comparison between CSC(classical HVDC) and NSC-HVDC system	2&3	T1:112
2	21	2		2005	11.112
			AC transmission and its control, necessary of		T1:129
3	22	2	dc link control,	2&3	
			rectifier control, inverter control, constant		T1:131
3	23	1	beta control	2&3	
-		1	constant gamma control, compounding of	26.4	T1:134
3	24	1	rectifiers, current compounding of inverter	3&4	
			complete HVDC system characteristics , power reversal in DC link, voltage dependent		T1:135
3	25	1	current order limit(VDCOL)	3&4	11.133
5	23	1	system control hierarchy ,individual phase	3&4	
			control, cosine control of phase delay, linear	504	
3	26		control phase delay		T1:142
			equidistance pulse control, pulse frequency		
	1		control, constant current control, inverter		
3	27	2	exhibition angle control	4&5	T1:147
			Constant power control, control system for		
3	28	2	HVDC converter, inverter operation problem,		
	1	_ _	control of VSC converters.	4&5	T1:152
			Harmonics due to converter, characteristic		
	20	2	current harmonics in the 12 pulse converter,	1 0- 1	T1.174
4	29	2		4&4	T1:174

			homeonics in VCC convertor homeonic		
			harmonics in VSC converter , harmonic		m1 1 77
4	30	1	model and equivalent circuit	4&5	T1:177
			design of AC filters, single tuned and double		
			tuned high pass filters, second order filters		
4	31	2	and C-Type filter	5&5	T1:200
			Reactive power considerations of AC filters		
4	32		, Active filters and their applications, filters		
		1	with VSC-HVDC schemes		
				5&5	
				0.010	T1:210
			3-phase symmetrical fault and asymmetrical		
5	33		faults, commutation failure, DC circuit		
5		2	breaker	6&5	
					T1:263
			Multi Terminal HVDC system: series and		
5			parallel MTDC systems and their operation		
	34	3	and control, AC-DC system interaction short		
			circuit rates and its effects	7&5	
					T1:306

Signature of HOD

SCHEDULE OF INSTRUCTIONS

UNIT PLAN

Academic Year : 2018-2019

Semester : II UNIT NO.:I....

Course/Subject: ...HVDC Transmission Course Code: ..GR15A4024.

Name of the Faculty: ...Dr.S.V.Jayaram Kumar, M.Rekha......Dept.: ...EEE......

	_	No. of		Objectives &	References
Unit		Periods	Topics / Sub-Topics	Outcomes	(Text Book,
No.	No.				Journal)
				Nos.	Page Nos.:to
1	1.	1	Introduction	1&1	1: Pg.No1
			Equipment required for HVDC		
1	2.	1	systems	1&1	1: Pg.No.13
			Comparison of AC and DC		
1	3.	1	Transmission	1&1	1: Pg.No17
			Limitations of HVDC transmission		
1	4.	1	lines	1&1	1: Pg.No28
1	5.	1	Reliability of HVDC systems	1&1	1: Pg.No28
			comparison of HVDC link with		
1	6	1	EHVAC link	1&2	1: Pg.No31
			HVDC convertors, HVDC –VSC		
1	7.	1	transmission	1&2	1: Pg.No31
1	8.	1	System: VSC system components	2&2	1: Pg.No131

SCHEDULE OF INSTRUCTIONS

UNIT PLAN

Academic Year : 2018-2019

Semester : II UNIT NO.:II....

Name of the Program: B.TechElectrical..................Year:IV..........Section: A&B

Course/Subject: ... HVDC Transmission Course Code: .. GR15A4024.

Name of the Faculty: ...Dr.S.V.Jayaram Kumar, M.Rekha......Dept.: ...EEE......Dept.: ...

Unit	Lesso	Periods	Topics/Subtopics	Objectives	(Text
No	n No			&Outcom	Book,Jouran
				e Nos	al)
					Page No.s
2	9	2	Choice Of Converter Configuration	1,2	2.Pg.no: 43-46
	10				1.Pg no. 84-97
2		2	Analysis Of 6 pulse Graetz Circuit	1,2	2.Pg.no.46-61
2	11	2			1.Pg no. 84-97
			Analysis Of 6 pulse Graetz Circuit	1,2	2.Pg.no.46-61
2	12	2	Analysis Of 6 pulse Graetz Circuit	1,2	1.Pg no. 84-97
					2.Pg.no.46-61
2	13	2	Analysis Of 12 pulse Graetz Circuit	1,2	2.Pg.no.61-65
2	14	2		1,2,3	1.Pg no. 66-68
			Principle Of DC link Control	2,3,4	2.Pg.no.76-79
2	15	2	Converter Control Characteristics	1,2,3	1.Pg no. 68-75
		_		2,3,4	2.Pg.no.79-84
2	1	2	Converter Control Characteristics	1,2,3	1.Pg no. 68-75
	6			2,3,4	2.Pg.no.79-84
2	17	2	Firing Angle Control	1,2,3	1.Pg no. 341-
					346
				2,3,4	2.Pg.no.84-89
2	18	2	Current and extinction angle control	1,2,3	1.Pg no.346-
				2,3,4	350 2.Pg.no.8-90
2	19	2	Effect Of Source Inductance on the	,-,-	2.Pg.no.90-94
			system, starting and stopping of DC	1,2,3	-
			link	2,3,4	
i			IIIIK	2,3,4	

Department of Electrical & Electronics Engineering

SCHEDULE OF INSTRUCTIONS

UNIT PLAN

Academic Year	: 2018-2019		
Semester	: 11	UNIT NO.:	
Name of the Program: B.T	echElectrical	Year:IV Section: A&B	
Course/Subject:HVDC Transmission		Course Code: GR15A4024.	
Name of the Eaculture Dr S.V. Javaram Kumar M. Bakha Dente EEE			

Name of the Faculty: ...Dr.S.V.Jayaram Kumar, M.Rekha......Dept.: ...EEE.....

Unit	Lesson	Ре	Topics/Subtopics	Objectiv	(Text
No	No	rio		es	Book,Joura
		ds		&Outco	nal)
				me Nos	Page No.s
3	20	2	AC transmission and its control,	2&3	1: Pg.no.129
			necessary of dc link control,		
3	21	2	AC transmission and its control,	2&3	1: Pg.no.129
			necessary of dc link control,		
3	22	2	rectifier control, inverter control, constant	2&3	1: Pg.no.131
			beta control		
3	23	2	constant gamma control, compounding of	3&4	1: Pg.no.134
			rectifiers, current compounding of inverter		
3		2	complete HVDC system characteristics,	3&4	1: Pg.no.135
			power reversal in DC link, voltage		
	24		dependent current order limit(VDCOL)		
3		2	system control hierarchy, individual phase	3&4	1: Pg.no.135
			control, cosine control of phase delay,		
	25		linear control phase delay		
3			equidistance pulse control, pulse		1: Pg.no.147
			frequency control, constant current		
	26	2	control, inverter exhibition angle control	4&5	
3			Constant power control, control system		1:Pg.no.152
	27		for HVDC converter, inverter operation		
		2	problem, control of VSC converters.	4&5	

SCHEDULE OF INSTRUCTIONS

UNIT PLAN

Academic Year	: 2018-2019	
Semester	: 11	UNIT NO.: IV
Name of the Program: B.TechElectrical Year: IV Section: A&B		
Course/Subject:HVDC Transmission		Course Code: GR15A4024.
Name of the Faculty: Dr.S.V.Jayaram Kumar, M.Rekha Dept.: EEE		

Designation: Professor, Asst.Professor

Unit No	Le sso n No	Period s	Topics/Subtopics	Objectives &Outcom e Nos	(Text Book,Jou ranal) Page No.s
4	28	2	Harmonics due to converter , characteristic current harmonics in the 12 pulse converter ,	3&4	1:Pg.No.17 4
4	29	1	harmonics in VSC converter , harmonic model and equivalent circuit	3&5	1: Pg.No 177
4	30	2	design of AC filters , single tuned and double tuned high pass filters , second order filters and C-Type filter	3&5	1: Pg.No 200
4	31	1	Reactive power considerations of AC filters ,Active filters and their applications, filters with VSC-HVDC schemes	3&5	
					1: Pg.No 210

SCHEDULE OF INSTRUCTIONS

UNIT PLAN

Academic Year	: 2018-2019		
Semester	: 11	UNIT NO.: V	
Name of the Program: B.Tec	hElectrical	Year:IV Section: A&B	
Course/Subject:HVDC Transmission		Course Code: GR15A4024.	
Name of the Faculty: Dr.S.V.Jayaram Kumar, M.Rekha Dept.: EEE			

Unit	Lesson	Periods	Topics/Subtopics	Objectiv	
No	No			es	(Text
				&Outco	Book,Jouran
				me Nos	al)
					Page No.s
			3-phase symmetrical fault and		
5	32	2	asymmetrical faults, commutation	3&5	
		2	failure, DC circuit breaker	202	
					1:Pg.No263
			Multi Terminal HVDC system: series		
5	33	2	and parallel MTDC systems and their		
	55	2	operation and control, AC-DC system		
			interaction short circuit rates and its	2&5	
			effects		
					1:Pg.No306
	34		3-phase symmetrical fault and		
5		2	asymmetrical faults, commutation	205	
_		2	failure, DC circuit breaker	3&5	
					1:Pg.No.263
	35		Multi Terminal HVDC system: series		
5			and parallel MTDC systems and their		
		2	operation and control, AC-DC system		
			interaction short circuit rates and its	2&5	
			effects		
					1:Pg No306

LESSON PLAN

Academic Year :	: 2018-19		
Semester	: I		
Name of the Program: B.Tech IV Year:	Se	ection:A&B	
Course/Subject: HVDC Transmission		Course Code	: GR15A4024
Name of the Faculty: DR.S.V.JAYARA M.REKHA	M KUMAR,	Dept.: EEE	
Designation: Professor, Assistant profes	ssor.		
Lesson No: 1		Duration of Lesson:	1hr 30 Minutes
Lesson Title: Types of DC links INSTRUCTIONAL/LESSON OBJECTI	IVES:		
On completion of this lesson the student			
1. To deal with the importance of HVI		HVDC Converters	
2. To deal with power conversion between Ac to DC and DC to AC.			

TEACHING AIDS : PPTs, White Board, LCD Projector, Marker

TEACHING POINTS

- 5 min.: Taking attendance
- 10 min.: Re collecting the contents of previous class.
- 70 min.: Explain in detail about DC Links.

:

• 5 min.: Doubts clarification and Review of the class.

Assignment / Questions: Explain briefly about different types of HVDC links. (Obj:1,2/Out:1,2)

LESSON PLAN

Academic Year	: 2018-19	
Semester	: I	
Name of the Program: B.Tech IV	' Year:	Section:A&B
Course/Subject: HVDC Transmis	ssion	Course Code: GR15A4024
Name of the Faculty: Dr.S.V.Jay M.Rekha	aram Kumar,	Dept.: EEE
Designation: Professor, Assistan	t professor	
Lesson No: 2		Duration of Lesson: 1hr 30 Minutes
Lesson Title: Apparatus required f	·	

On completion of this lesson the student shall be able to:

:

- 1. To deal with the importance of HVDC Transmission and HVDC Converters
- 2. To deal with power conversion between Ac to DC and DC to AC.

TEACHING AIDS : PPTs, White Board, LCD Projector, Marker

TEACHING POINTS

- 5 min.: Taking attendance
- 10 min.: Re collecting the contents of previous class.
- 70 min.: Explain in detail about the apparatus required for HVDC systems.
- 5 min.: Doubts clarification and Review of the class.

Assignment / Questions: Draw a schematic diagram of typical HVDC converter station and describe the various components of the station. (Obj:1,2/Out:1,2)

LESSON PLAN

Academic Year	: 2018-19			
Semester	: I			
Name of the Program: B.Tech IV	⁷ Year:	Section:A&B		
Course/Subject: HVDC Transmi	ssion	Course Cod	le: GR15A4024	
Name of the Faculty: DR.S.V.JA KUMAR, M.REKHA	YARAM		Dept.: EEE	
Designation Professor, Assistant	professor.			
Lesson No: 3		Duration of Lesson:	1hr 30 Minutes	
Lesson Title: Comparison of AC a INSTRUCTIONAL/LESSON O				
On completion of this lesson the	student shall be able	e to:		
1. To deal with the importance	e of HVDC Transmiss	ion and HVDC Conver	ters	
2. To deal with power conversion between Ac to DC and DC to AC.				
TEACHING AIDS : PPTs,	White Board, LCD	Projector, Marker		
TEACHING POINTS :				
• 5 min.: Taking attendance				
• 10 min.: Re collecting the contents of previous class.				
• 70 min.: Explain in detail about comparision of AC and DC Transmission.				
• 5 min.: Doubts clarification and Review of the class.				

Assignment / Questions: What is the need for interconnection of systems? Explain the merits of connecting HVAC systems by HVDC tie -lines (Obj:1,2/Out:1,2)

LESSON PLAN

Academic Year	: 2018-19		
Semester	: I		
Name of the Program: B.Tech IV Y	/ ear: Se	ction: A& B	
Course/Subject: HVDC Transmissi	on	Course Code	: GR15A4024
Name of the Faculty: DR.S.V.JAY M.REKHA	ARAM KUMAR,	Γ	Dept.: EEE
Designation: Professor, Assistant P	rofessor.		
Lesson No: 4		Duration of Lesson:	1hr 30 Minutes
Lesson Title: Applications of DC Tra	insmission System		

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

:

- 1. To deal with the importance of HVDC Transmission and HVDC Converters
- 2. To deal with power conversion between Ac to DC and DC to AC.

TEACHING AIDS : PPTs, White Board, LCD Projector, Marker

TEACHING POINTS

- 5 min.: Taking attendance
- 10 min.: Re collecting the contents of previous class.
- 70 min.: Explain in detail about the applications of HVDC systems.
- 5 min.: Doubts clarification and Review of the class.

Assignment / Questions: Explain the economic advantages of HVDC system. (Obj:1,2/Out:1,2)

LESSON PLAN

Academic Year	: 2018-19			
Semester	: I			
Name of the Program: B.Tech IV Year:	Section: A&B			
Course/Subject: HVDC Transmission	Course Code: GR15A4024			
Name of the Faculty: DR.S.V.JAYARAN M.REKHA	M KUMAR, Dept.: EEE			
Designation: Professor, Assistant profes	sor			
Lesson No: 5	Duration of Lesson: 1hr 30 Minutes			
Lesson Title: Choice of Converter Configur	ration			
INSTRUCTIONAL/LESSON OBJECTI	VES:			
On completion of this lesson the student	shall be able to:			
 To deal with the importance of HVDC Transmission and HVDC Converters To deal with power conversion between Ac to DC and DC to AC. 				
TEACHING AIDS : PPTs, White Board, LCD Projector, Marker				
TEACHING POINTS :				
• 5 min.: Taking attendance				
• 10 min.: Re collecting the content	ts of previous class.			

- 70 min.: Explain in detail about Choice of Converter Configuration.
- 5 min.: Doubts clarification and Review of the class.

Assignment / Questions: What are the factors which help in deciding the number of pulse converters used

in a systems. Classify them as economic, technical and describe. (Obj: 1, 2/Out: 1, 2)

Department of Electrical & Electronics Engineering

	LESSON	PLAN
Academic Year	: 2018-19	
Semester	: I	
Name of the Program: B.Tech IV Y	/ear: Se	ection:A&B
Course/Subject: HVDC Transmissi	on	Course Code: GR15A4024
Name of the Faculty: DR.S.V.JAY, M.REKHA	ARAM KUMAR,	Dept.: EEE
Designation: Professor, Assistant p	professor	
Lesson No: 6		Duration of Lesson: 1hr 30 Minutes
Lesson Title: Analysis of 6 pulse Gra		
On completion of this lesson the stu	ident shall be able to:	
 To deal with the importance of To deal with power conversion 		

TEACHING AIDS : PPTs, White Board, LCD Projector, Marker

TEACHING POINTS

- 5 min.: Taking attendance
- 10 min.: Re collecting the contents of previous class.

:

- 70 min.: Explain in detail about Analysis of 6 pulse Graetz Circuit.
- 5 min.: Doubts clarification and Review of the class.

Assignment / Questions: Obtain expression for the output voltage and direct current of a converter working as a rectifier with delay angle ` α ' and commutation angle ` γ '. (Obj:1,2/Out:1,2)

Department of Electrical & Electronics Engineering

LESSON PLAN

Academic Year	: 2018-19	
Semester	: I	
Name of the Program: B.Tech IV Year: Section: A&B		
Course/Subject: HVDC Transmission	Course	Code: GR15A4024
Name of the Faculty: DR.S.V.JAYARAM M.REKHA	I KUMAR,	Dept.: EEE
Designation: Professor, Assistant professor	or.	
Lesson No: 7	Duration of Les	sson: 1hr 30 Minutes
Lesson Title: Analysis of 6 pulse Graetz Cir	cuit	
INSTRUCTIONAL/LESSON OBJECTIV	<u>'ES:</u>	

On completion of this lesson the student shall be able to:

- 1. To deal with the importance of HVDC Transmission and HVDC Converters
- 2. To deal with power conversion between Ac to DC and DC to AC.

TEACHING AIDS : PPTs, White Board, LCD Projector, Marker

TEACHING POINTS :

- 5 min.: Taking attendance
- 10 min.: Re collecting the contents of previous class.
- 70 min.: Explain in detail about Analysis of 6 pulse Graetz Circuit.
- 5 min.: Doubts clarification and Review of the class.

Assignment / Questions: With the help of neat sketches, analyze a six pulse rectifier bridge circuit with an overlap angle greater than 60° . Deduce the relevant equations and draw the necessary graphs. (Obj:1,2/Out:1,2)

Department of Electrical & Electronics Engineering

LESSON PLAN

Academic Year	: 2018-19		
Semester	: I		
Name of the Program: B.Tech IV Year:	Sectio	on:A&B	
Course/Subject: HVDC Transmission		Course Code	: GR15A4024
Name of the Faculty: DR.S.V.JAYARAM M.REKHA	KUMAR,	I	Dept.: EEE
Designation: Professor, Assistant professo	or.		
Lesson No: 8		Duration of Lesson:	1hr 30 Minutes
Lesson Title: Analysis of 6 pulse Graetz Cir INSTRUCTIONAL/LESSON OBJECTIV			
On completion of this lesson the student sl	hall be able to:		

- 1. To deal with the importance of HVDC Transmission and HVDC Converters
- 2. To deal with power conversion between Ac to DC and DC to AC.
- TEACHING AIDS : PPTs, White Board, LCD Projector, Marker

TEACHING POINTS

- 5 min.: Taking attendance
- 10 min.: Re collecting the contents of previous class.

:

- 70 min.: Explain in detail about Analysis of 6 pulse Graetz Circuit.
- 5 min.: Doubts clarification and Review of the class.

Assignment / Questions: Sketch a timing diagram for a 3phase Graetz's circuit considering with and without overlap angle less than 60° . (Obj:1,2/Out:1,2)

Department of Electrical & Electronics Engineering

LESSON PLAN

Academic Year	: 2018-19	
Semester	: I	
Name of the Program: B.Tech IV Year:	Section: A&B	
Course/Subject: HVDC Transmission	Course Code: GR15A4024	
Name of the Faculty: DR.S.V.JAYARA M.REKHA	M KUMAR, Dept.: EEE	
Designation: Professor, Assistant professor.		
Lesson No: 9	Duration of Lesson: 1hr 30 Minutes	
Lesson Title: Analysis of 12 pulse Graetz Circuit INSTRUCTIONAL/LESSON OBJECTIVES:		
On completion of this lesson the student shall be able to:		
1. To deal with the importance of HVDC Transmission and HVDC Converters		
2. To deal with power conversion between Ac to DC and DC to AC.		
TEACHING AIDS : PPTs, Whit	e Board, LCD Projector, Marker	
TEACHING POINTS :		

- 5 min.: Taking attendance
- 10 min.: Re collecting the contents of previous class.
- 70 min.: Explain in detail about Analysis of 12 pulse Graetz Circuit.
- 5 min.: Doubts clarification and Review of the class.

Assignment / Questions: What is the reason for using star-star and star-delta transformer configurations for 12 pulse converter. Derive an equation for primary current using fourier analysis. (Obj:1,2/Out:1,2)

Department of Electrical & Electronics Engineering

LESSON PLAN

Academic Year	: 2018-19	
Semester	: I	
Name of the Program: B.Tech IV	/ Year:	Section:A& B
Course/Subject: HVDC Transmi	ssion	Course Code: GR15A4024
Name of the Faculty: DR.S.V.JA M.REKHA	YARAM KUMAR,	Dept.: EEE
Designation: Professor, Assistan	nt professor.	
Lesson No: 10		Duration of Lesson: 1hr 30 Minutes
Lesson Title: Principle of DC lin	ık Control	
INSTRUCTIONAL/LESSON O	BJECTIVES:	

On completion of this lesson the student shall be able to:

- 1. To deal with the importance of HVDC Transmission and HVDC Converters
- 2. To deal with power conversion between Ac to DC and DC to AC.
- 3. To deal with firing angle of HVDC System

TEACHING AIDS : PPTs, White Board, LCD Projector, Marker

TEACHING POINTS :

- 5 min.: Taking attendance
- 10 min.: Re collecting the contents of previous class.
- 70 min.: Explain in detail about Principle of DC link Control.
- 5 min.: Doubts clarification and Review of the class.

Assignment / Questions: Derive the mathematical model of d.c. link controllers of a d.c. link. (Obj:1,2,3/Out:2,3,4)

Department of Electrical & Electronics Engineering

LESSON PLAN

Academic Year
: 2018-19

Semester
: I

Name of the Program: B. Tech IV Year: Section: A&B

Course/Subject: HVDC Transmission
Course Code: GR15A4024

Name of the Faculty: DR.S.V.JAYARAM KUMAR, M.REKHA
Dept.: EEE

Designation: Professor, Assistant professor.

Lesson No: 11

Lesson Title: Converter control characteristics

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. To deal with the importance of HVDC Transmission and HVDC Converters
- 2. To deal with power conversion between Ac to DC and DC to AC.
- 3. To deal with firing angle of HVDC System

:

TEACHING AIDS : PPTs, White Board, LCD Projector, Marker

TEACHING POINTS

- 5 min.: Taking attendance
- 10 min.: Re collecting the contents of previous class.
- 70 min.: Explain in detail about Converter control characteristics.
- 5 min.: Doubts clarification and Review of the class.

Assignment / Questions: What are the basic characteristics of converter control? With the aid of V-I characteristics, explain how power ow control is achieved? (Obj:1,2,3/Out:2,3,4)

LESSON PLAN

Academic Year	: 2018-19	
Semester	: I	
Name of the Program: B.Tech IV Year:	: Section:A&B	
Course/Subject: HVDC Transmission	Course Code: GR15A4024	
Name of the Faculty: DR.S.V.JAYARA M.REKHA	M KUMAR, Dept.: EEE	
Designation: Professor, Assistant professor.		
Lesson No: 12	Duration of Lesson: 1hr 30 Minut	es
Lesson Title: Converter control characteristics INSTRUCTIONAL/LESSON OBJECTIVES:		
On completion of this lesson the student shall be able to:		
 To deal with the importance of HVDC Transmission and HVDC Converters To deal with power conversion between Ac to DC and DC to AC. To deal with firing angle of HVDC System TEACHING AIDS : PPTs, White Board, LCD Projector, Marker 		
TEACHING POINTS :		

- 5 min.: Taking attendance
- 10 min.: Re collecting the contents of previous class.
- 70 min.: Explain in detail about Principle of Converter control characteristics.
- 5 min.: Doubts clarification and Review of the class.

Assignment / Questions: What are the desired features of control? Explain in detail. (Obj:1,2,3/Out:2,3,4)

Department of Electrical & Electronics Engineering

LESSON PLAN

Academic Year
: 2018-19

Semester
: I

Name of the Program: B.Tech IV Year: Section: A&B

Course/Subject: HVDC Transmission
Course Code: GR15A4024

Name of the Faculty: DR.S.V.JAYARAM KUMAR,
M.REKHA
Dept.: EEE

Designation: Professor, Assistant professor.
Duration of Lesson: 1hr 30 Minutes

Lesson Title: Firing angle control
Image: Control Section Co

On completion of this lesson the student shall be able to:

- 1. To deal with the importance of HVDC Transmission and HVDC Converters
- 2. To deal with power conversion between Ac to DC and DC to AC.
- 3. To deal with firing angle of HVDC System

TEACHING AIDS : PPTs, White Board, LCD Projector, Marker

TEACHING POINTS :

- 5 min.: Taking attendance
- 10 min.: Re collecting the contents of previous class.
- 70 min.: Explain in detail about Firing angle control.
- 5 min.: Doubts clarification and Review of the class.

Assignment / Questions: What is equivalent pulse control? What are the advantages of equivalent pulse contro over individual phase control? (Obj:1,2,3/Out:2,3,4)

LESSON PLAN

On completion of this lesson the student shall be able to:

- 1. To deal with the importance of HVDC Transmission and HVDC Converters
- 2. To deal with power conversion between Ac to DC and DC to AC.
- 3. To deal with firing angle of HVDC System

:

TEACHING AIDS : PPTs, White Board, LCD Projector, Marker

TEACHING POINTS

- 5 min.: Taking attendance
- 10 min.: Re collecting the contents of previous class.
- 70 min.: Explain in detail about Current and extinction angle control.
- 5 min.: Doubts clarification and Review of the class.

Assignment / Questions: What is the necessity of having constant ignition angle, constant current and constant extinction angle controllers at each converter station? (Obj:1,2,3/Out:2,3,4)

LESSON PLAN

Academic Year	: 2018-19	
Semester	: I	
Name of the Program: B.Tec	h IV Year:	Section:A&B
Course/Subject: HVDC Tran	smission	Course Code: GR15A4024
Name of the Faculty: DR.S.V	/.JAYARAM KUMAR, N	M.REKHA
Dept.: EEE Designation: Pro	ofessor, Assistant professo	Dr
Lesson No: 15		Duration of Lesson: <u>1hr</u> 30 Minutes

Lesson Title: Effect of source inductance on the system, Starting and stopping of DC link

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. To deal with the importance of HVDC Transmission and HVDC Converters
- 2. To deal with power conversion between Ac to DC and DC to AC.
- 3. To deal with firing angle of HVDC System

:

TEACHING AIDS : PPTs, White Board, LCD Projector, Marker

TEACHING POINTS

- 5 min.: Taking attendance
- 10 min.: Re collecting the contents of previous class.
- 70 min.: Explain in detail about Effect of source inductance on the system, Starting and stopping of DC link.
- 5 min.: Doubts clarification and Review of the class.

Assignment / Questions: Explain the working of working basic power controller using VDCOL (Voltage Dependent Current Order Limiter). (Obj:1,2,3/Out:2,3,4)

LESSON PLAN

Academic Year : 2018-19

Semester : I

Name of the Program: B.Tech IV Year: Section:A&B

Course/Subject: HVDC Transmission

Course Code: GR15A4024

Name of the Faculty: DR.S.V.JAYARAM KUMAR, M.REKHA

Dept.: EEE Designation: Professor, Assistant professor.

Lesson No: 16 Duration of Lesson: <u>1hr</u> 30 Minutes

Lesson Title: Reactive power requirements in steady state, Conventional Control Strategies

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

- 1. To deal with firing angle of HVDC System.
- 2. To deal with Reactive power control of HVDC system

TEACHING AIDS : PPTs, White Board, LCD Projector, Marker

TEACHING POINTS :

- 5 min.: Taking attendance
- 10 min.: Re collecting the contents of previous class.
- 70 min.: Explain in detail about Reactive power requirements in steady state, Conventional Control Strategies.
- 5 min.: Doubts clarification and Review of the class.

Assignment / Questions: What is meant by Reactive power control and also give different sources of reactive power. (Obj:3,4/Out:4,5)

Department of Electrical & Electronics Engineering

	LESSON	PLAN
Academic Year	: 2018-19	
Semester	: I	
Name of the Program: B.Te	ch IV Year: S	ection:A&B
Course/Subject: HVDC Trai	ismission	Course Code: GR15A4024
Name of the Faculty: DR.S. M.REKHA	V.JAYARAM KUMAR,	Dept.: EEE
Designation: Professor, Ass	istant professor.	
Lesson No: 17		Duration of Lesson: 1hr 30 Minutes
Lesson Title: Alternate Con	rol Strategies	
INSTRUCTIONAL/LESSO	N OBJECTIVES:	
On completion of this lessor	the student shall be able to:	
1. To deal with firing a	ngle of HVDC System.	
2. To deal with Reactiv	e power control of HVDC syste	em
TEACHING AIDS :	PPTs, White Board, LCD Proj	ector, Marker
TEACHING POINTS :		
• 5 min.: Taking attend	lance	

- 10 min.: Re collecting the contents of previous class.
- 70 min.: Explain in detail about Alternate Control Strategies
- 5 min.: Doubts clarification and Review of the class.

Assignment / Questions: Write a note on Alternate control strategies. (Obj:3,4/Out:4,5)

LESSON PLAN

 Academic Year
 : 2018-19

 Semester
 : I

 Name of the Program: B.Tech IV Year:
 Section:A&B

 Course/Subject: HVDC Transmission
 Course Code: GR15A4024

 Name of the Faculty: DR.S.V.JAYARAM KUMAR,
M.REKHA
 Dept.: EEE

 Designation: Professor, Assistant professor..
 Lesson No: 18

 Lesson Title: Sources of Reactive power

INSTRUCTIONAL/LESSON OBJECTIVES:

On completion of this lesson the student shall be able to:

1. To deal with firing angle of HVDC System.

2. To deal with Reactive power control of HVDC system TEACHING AIDS : PPTs, White Board, LCD Projector, Marker

TEACHING POINTS :

- 5 min.: Taking attendance
- 10 min.: Re collecting the contents of previous class.
- 70 min.: Explain in detail about Sources of Reactive power
- 5 min.: Doubts clarification and Review of the class.

Assignment / Questions: Give different sources of reactive power. (Obj:3,4/Out:4,5)

LESSON PLAN

Academic Year	: 2018-19	
Semester	: I	
Name of the Program: B.Tech IV Year	:: Section:A&B	
Course/Subject: HVDC Transmission	Course Code: GR15A4024	
Name of the Faculty: DR.S.V.JAYARA M.REKHA	AM KUMAR, Dept.: EEE	
Designation: Professor, Assistant profe	essor.	
Lesson No: 19	Duration of Lesson: 1hr 30 Minutes	
Lesson Title: Modelling of DC link <u>INSTRUCTIONAL/LESSON OBJECTIVES:</u> On completion of this lesson the student shall be able to: 1. To deal with firing angle of HVDC System. 2. To deal with Reactive power control of HVDC system		
TEACHING POINTS :		
 5 min.: Taking attendance 10 min.: Re collecting the conte 70 min.: Explain in detail about 5 min.: Doubts clarification and 	Modelling of DC link.	

Assignment / Questions: Explain by means of a schematic diagram and with theortical expression, how power ow through HVDC link, is controlled? (Obj:3,4/Out:4,5)

LESSON PLAN

Academic Year	: 2018-19	
Semester	: I	
Name of the Program: B.Tech IV Year:	Section:A&B	
Course/Subject: HVDC Transmission	Course Code: GR15A4024	
Name of the Faculty: DR.S.V.JAYARA M.REKHA	M KUMAR, Dept.: EEE	
Designation: Professor, Assistant profes	ssor.	
Lesson No: 20	Duration of Lesson: 1hr 30 Minutes	
Lesson Title: P.U system for d.c quantitien <u>INSTRUCTIONAL/LESSON OBJECT</u> On completion of this lesson the student 1. To deal with firing angle of HVI 2. To deal with Reactive power com	IVES: t shall be able to: DC System. htrol of HVDC system	
TEACHING AIDS: PPTs, White Board, LCD Projector, Marker		
TEACHING POINTS :		
• 5 min.: Taking attendance		
• 10 min.: Re collecting the conten	ts of previous class.	
• 70 min.: Explain in detail about I	P.U system for d.c quantities.	
• 5 min.: Doubts clarification and l	Review of the class.	

Assignment / Questions: Write a short notes on:

- (a) Modeling of H.V.D.C. links
- (b) P.U. system for d.c. quantities. (Obj:3,4/Out:4,5)

LESSON PLAN

Academic Year	: 2018-19
Semester	: I
Name of the Program: B.Tech IV Yea	r: Section:A&B
Course/Subject: HVDC Transmission	Course Code: GR15A4024
Name of the Faculty: DR.S.V.JAYAR M.REKHA	AM KUMAR, Dept.: EEE
Designation: Professor, Assistant prof	fessor.
Lesson No: 21	Duration of Lesson: 1hr 30 Minutes
TEACHING POINTS :	<u>TIVES:</u> nt shall be able to: VDC System.
 5 min.: Taking attendance 10 min.: Re collecting the cont 70 min.: Explain in detail abou 5 min.: Doubts clarification and 	t Solution of AC- DC load flow.

Assignment / Questions: What do you understand by a load flow? Is the load flow chart different for a DC Load flow as compared to AC load flow? (Obj:3,4/Out:4,5)

LESSON PLAN

Academic Year	: 2018-19		
Semester	: I		
Name of the Program: B.Tech IV	/ Year:	Section:A&B	
Course/Subject: HVDC Transmi	ssion	Course Code:	GR15A4024
Name of the Faculty: DR.S.V.JA KUMAR, M.REKHA	AYARAM	D	ept.: EEE
Designation: Professor, Assistan	nt professor.		
Lesson No: 22		Duration of Lesson:	1hr 30 Minutes
Lesson Title: Protection against INSTRUCTIONAL/LESSON O		rvoltage in converter sta	ation
On completion of this lesson the	student shall be able	e to:	
1. To deal with the protection	n of HVDC system		
TEACHING AIDS : Whi	ite Board, Marker		
TEACHING POINTS :			

- 5 min.: Taking attendance
- 10 min.: Re collecting the contents of previous class.
- 70 min.: Explain in detail about Protection against over current and overvoltage in converter station.
- 5 min.: Doubts clarification and Review of the class.

Assignment / Questions: What are the basic principles of over current protection. (Obj:6/Out:7)

Department of Electrical & Electronics Engineering

LESSON PLAN

Academic Year	: 2018-19		
Semester	: I		
Name of the Program: B.Tech IV	⁷ Year:	Section:A&B	
Course/Subject: HVDC Transmi	ssion	Course Code: GR15A4024	
Name of the Faculty: DR.S.V.JA KUMAR, M.REKHA	YARAM	Dept.: EEE	
Designation: Professor, Assistan	t professor.		
Lesson No: 23		Duration of Lesson: 1hr 30 Minutes	
Lesson Title: Surge arrestors, Sn	noothing Reactors		
INSTRUCTIONAL/LESSON OBJECTIVES:			
On completion of this lesson the student shall be able to:			
1. To deal with the protection	n of HVDC system		
TEACHING AIDS : Whi	te Board, Marker		
TEACHING POINTS :			
• 5 min.: Taking attendance	2		

- 10 min.: Re collecting the contents of previous class.
- 70 min.: Explain in detail about Surge arrestors, Smoothing Reactors.
- 5 min.: Doubts clarification and Review of the class.

Assignment / Questions: Give the necessity of smoothing reactor in a HVDC system and list out main functions of it. (Obj:6/Out:7)

LESSON PLAN

Academic Year	: 2018-19	
Semester	: I	
Name of the Program: B.Tech IV	Year:	Section:A&B
Course/Subject: HVDC Transmis	ssion	Course Code: GR15A4024
Name of the Faculty: DR.S.V.JA KUMAR, M.REKHA	YARAM	Dept.: EEE
Designation: Professor, Assistan	t professor.	
Lesson No: 24		Duration of Lesson: 1hr 30 Minutes
Lesson Title: DC Breakers, Coro	na effects on DC lines	
INSTRUCTIONAL/LESSON OI	BJECTIVES:	
On completion of this lesson the	student shall be able to	:
1. To deal with the protection	of HVDC system	
TEACHING AIDS : Whit	te Board, Marker	
TEACHING POINTS :		
• 5 min.: Taking attendance	;	

- 10 min.: Re collecting the contents of previous class.
- 70 min.: Explain in detail about DC Breakers, Corona effects on DC lines
- 5 min.: Doubts clarification and Review of the class.

Assignment / Questions: How is the effect of corona neglected in a HVDC system? Compare this with corona effect of a HVDC system. (Obj:6/Out:7)

LESSON PLAN

Academic Year :	2018-19		
Semester :	Ι		
Name of the Program: B.Tech IV	Year: Sectio	n:A&B	
Course/Subject: HVDC Transmiss	ion Co	urse Code: GR15A4024	
Name of the Faculty: DR.S.V.JAYARAM KUMAR, M.REKHA		Dept.: EEE	
Designation: Professor, Assistant professor.			
PROFESSOR. Lesson No: 25	Duration	n of Lesson: 1hr 30 Minutes	
Lesson Title: Generation of Harmo	onics, Characteristic harmonics		
INSTRUCTIONAL/LESSON OB	JECTIVES:		
On completion of this lesson the student shall be able to:			
1. To deal with Power factor in	nprovement of HVDC system		
TEACHING AIDS : White	Board, Marker		
TEACHING POINTS :			
• 5 min.: Taking attendance			

- 10 min.: Re collecting the contents of previous class.
- 70 min.: Explain in detail about Generation of Harmonics, Characteristic harmonics
- 5 min.: Doubts clarification and Review of the class.

Assignment / Questions: Why are harmonics generated in HVDC converter and what are the problems associated with the harmonics. Suggest some remedial measures. (Obj:5/Out:6, 7)

LESSON PLAN

Academic Year	: 2018-19	
Semester	: I	
Name of the Program: B.Teo	ch IV Year :	Section:A&B
Course/Subject: HVDC Tran	nsmission	Course Code: GR15A4024
Name of the Faculty: DR.S. KUMAR, M.REKHA	V.JAYARAM	Dept.: EEE
Designation: Professor, Ass	istant professor	
Lesson No: 26		Duration of Lesson: 1hr 30 Minutes
Lesson Title: Calculation of INSTRUCTIONAL/LESSO	AC Harmonics, Non Characte <u>N OBJECTIVES:</u>	eristics harmonics
On completion of this lesson	the student shall be able to:	
1. To deal with Power fa	ctor improvement of HVDC sy	stem
TEACHING AIDS :	White Board, Marker	
TEACHING POINTS :		

- 5 min.: Taking attendance
- 10 min.: Re collecting the contents of previous class.
- 70 min.: Explain in detail about Calculation of AC Harmonics, Non Characteristics harmonics
- 5 min.: Doubts clarification and Review of the class.

Assignment / Questions: How is Total Harmonic Distortion estimated in a circuit? Explain the relevance of THD to a HVDC system. (Obj:5/Out:6, 7)

LESSON PLAN

Academic Year	: 2018-19	
Semester	: I	
Name of the Program: B.Tech l	V Year:	Section:A&B
Course/Subject: HVDC Transm	uission	Course Code: GR15A4024
Name of the Faculty: DR.S.V.J M.REKHA	AYARAM KUMAR,	Dept.: EEE
Designation: Professor, Assista	ant professor.	
Lesson No: 27		Duration of Lesson: 1hr 30 Minutes
Lesson Title: Types of AC filte		
On completion of this lesson th		:
1. To deal with Power facto		
TEACHING AIDS : WI	hite Board, Marker	
TEACHING POINTS :		
• 5 min.: Taking attendan	ce	
• 10 min.: Re collecting the	he contents of previous c	lass.
• 70 min.: Explain in deta	il about Types of AC filt	ters
• 5 min.: Doubts clarificat	tion and Review of the c	lass.

Assignment / Questions: What are the various types of _lters that are employed in HVDC converter station? Discuss them in detail. (Obj:5/Out:6, 7)

LESSON PLAN

Academic Year	: 2018-19	
Semester	: I	
Name of the Program: B.Tech IV	/ Year:	Section:A&B
Course/Subject: HVDC Transmi	ssion	Course Code: GR15A4024
Name of the Faculty: DR.S.V.JA M.REKHA	YARAM KUMAR,	Dept.: EEE
Designation: Professor, Assistan	ıt professor	
Lesson No: 28		Duration of Lesson: 1hr 30 Minutes
Lesson Title: Design of Single tu INSTRUCTIONAL/LESSON O		filters
On completion of this lesson the	student shall be able t	0:
1. To deal with Power factor	improvement of HVD0	C system
TEACHING AIDS : Whi	ite Board, Marker	
TEACHING POINTS :		
• 5 min.: Taking attendance	2	
• 10 min.: Re collecting the	e contents of previous	class.

- 70 min.: Explain in detail about Design of Single tuned filters, High pass filters
- 5 min.: Doubts clarification and Review of the class.

Assignment / Questions: Compare the schematics of a low pass filter and a high pass filter. What are the key elements common features and the dissimilarities. (Obj:5/Out:6, 7)

ASSIGNMENT SHEET – 1

Academic Year	: 2018-19	
Semester	: I	
Name of the Program: B.Tech	h IV Year	Section:A&B
Course/Subject: HVDC TRAN	JSMISSION	
Name of the Faculty: DR.S.V.	JAYARAM KUMAR, M.REKHA	Dept.: EEE
Designation : Profe	essor, Assistant professor.	
This Assignment corresponds	s to Unit No. I	
Q1. Explain briefly about dif	ferent types of HVDC links	
Q2. What is the need for inter HVDC tie -lines	rconnection of systems? Explain the	e merits of connecting HVAC systems by

Q3. Explain the economic advantages of HVDC system

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: 1,2

Outcome Nos.: 1,2

Signature of HOD

Signature of faculty

Date:

ASSIGNMENT SHEET – 2

Academic Year	: 2018-19	Date: 07.07.16
Semester	: I	
Name of the Program: B.Tech IV	Year:	Section:A&B
Course/Subject: HVDC TRANSM	ISSION	
Name of the Faculty: DR.S.V.JAY	ARAM KUMAR, M.REKHA	Dept.: EEE
Designation : Professo	r, Assistant professor.	

This Assignment corresponds to Unit No. II

Q1. Draw a schematic of a 6 pulse converter circuit and derive from fundamentals, the expression for voltage and currents for the operation of converter as a rectifier and inverter with relevant waveforms.

Q2. Sketch a timing diagram for a 3phase Graetz's circuit considering with and without overlap angle less than 60° .

Q3. Draw the equivalent circuits of both recti_er and inverter.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: 1,2.

Outcome Nos.: 1,2

Signature of HOD

Date:

Signature of faculty

ASSIGNMENT SHEET – 3

Academic Year	: 2018-19					
Semester	:I					
Name of the Prog	gram: B.TechIV	Year: Section: A&B				
Course/Subject:	HVDC TRANSMISSI	ON				
Name of the Faculty: DR.S.V.JAYARAM KUMAR, M.REKHA Dept.: EEE						
Designation	: Professor, Assistant professor.					
This Assignment corresponds to Unit No. III						
Q1. What are the	e alternate reactive pow	er control strategies?				

Q2.Discus s the various sources of reactive power for HVDC converters.

Q3. Explain in detail , the concept of reactive power requirement in HVDC converters.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.:.3,4

Outcome Nos.: 4,5

Signature of HOD

Signature of faculty

Date:

ASSIGNMENT SHEET – 4

Academic Year	: 2018-19	Date: 22.09.16.
Semester	: I	
Name of the Program: B.Tech.	IV Year: Section	:A&B
Course/Subject: HVDC TRAN	SMISSION	
Name of the Faculty: DR.S.V.J. M.REKHA	AYARAM KUMAR,	Dept.:EEE
Designation : Professo	or, Assistant professor.	
This Assignment corresponds to) Unit No. IV	
Q1. Classify the faults on a con	verter	
Q2. Write a brief note on short	circuits in a converter.	
Q3. Explain the difference betw	een the A.C. circuit breaker and H.V.D.C	C. circuit breaker.

Q4. Explain the causes of over voltages on D.C. side of H.V.D.C converter.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: 5

Outcome Nos.: 7

Signature of HOD

Signature of faculty

Date:

ASSIGNMENT SHEET – 5

Academic Year	: 2018-19		
Semester	:I		
Name of the Program: B.Tec	h IV	Year:IV	Section:A&B
Course/Subject: HVDC TRA	NSMISSION		
Name of the Faculty: DR.S.V	JAYARAM KU	MAR, M.REKHA	Dept.:EEE
Designation	:Prot	fessor, Assistant professor.	

This Assignment corresponds to Unit No. V

Q1. Derive the expression for a total harmonic distortion in a 12 pulse converter.

Q2. How the voltage and current harmonics are calculated.

Q3. Explain in detail the non characteristic harmonics

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: 5

Outcome Nos.: 6,7

Signature of HOD

Date:

Signature of faculty

Department of Electrical & Electronics Engineering

TUTORIAL SHEET - 1

Academic Year	: 2018-19		Date: 30.06.16.
Semester	_: I		
Name of the Program: B.T	ech IV Year:	Section &B	:А
Course/Subject: HVDC T	RANSMISSION		
Name of the Faculty: DR.	S.V.JAYARAM KUMAR, I	M.REKHA	Dept.: EEE
Designation This Tutorial correspond		, Assistant professor.	
Q1. What is the need of i	interconnection of systems?	?	
Q2. Explain the merits o	f connecting HVAC system	ns by HVDC tie-lines	?

Q3. Discuss the relative merits and demerits of using E.H.V.A.C transmission and HVDC transmission for bulk power transmission over long distances.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: 1,2

Outcome Nos.: 1,2

Signature of HOD

Signature of faculty

TUTORIAL SHEET - 2

Academic Year : 2018-19

Semester

Name of the Program : B.Tech IV Year

Section:A&B

Course/Subject: HVDC TRANSMISSION

Name of the Faculty: DR.S.V.JAYARAM KUMAR, M.REKHA

:I

Dept.: EEE

Designation : Professor, Assistant professor.

This Tutorial corresponds to Unit No. II

Q1. With the help of neat sketches, analyze a six pulse recti_er bridge circuit with

an overlap angle greater than 600. Deduce the relevant equations and draw the necessary graphs.

Q2. With the help of neat sketches, analyze a six pulse recti_er bridge circuit with an overlap angle less than 600. Deduce the relevant equations and draw the necessary graphs.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: 1,2

Outcome Nos.: 1,2

Signature of HOD

Signature of faculty

Date:

TUTORIAL SHEET - 3

Academic Year : 2018-19

Semester : I

Name of the Program: B.Tech IV Year:

Section:A &B

Course/Subject: HVDC TRANSMISSION

Name of the Faculty: DR.S.V.JAYARAM KUMAR, M.REKHA

Dept.: EEE

Designation	: Professor,
C	Assistant
	professor.

This Tutorial corresponds to Unit No. III

Q1. Write a short notes on:

(a) Modeling of H.V.D.C. links

(b) P.U. system for d.c. quantities.

Q2. Compare simultaneous and sequential methods of power flow analysis.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.:.3,4

Outcome Nos.: 4,5

Signature of HOD

Academic Year

Department of Electrical & Electronics Engineering

TUTORIAL SHEET - 4

Semester	: I	
Name of the Program	m: B.Tech IV Year:	Section:A &B
Course/Subject: HV	DC TRANSMISSION	
Name of the Faculty	y: DR.S.V.JAYARAM KUMAR, M.REK	HA Dept.: EEE
Designation	: Professor, Assistant professor.	
This Tutorial corre	sponds to Unit No. IV	
Q1. Explain the eff	fects of single commutation failure in co	nverter.
Q2. Explain briefly	the factors on which recovery from a co	ommutation failure depends.

: 2018-19

Q3. Explain the fault clearing process in H.V.D.C. poles. Explain how are the H.V.D.C.equipment protected against prolonged short circuit currents though there is no H.V.D.C. circuit breaker on H.V.D.C. pole side.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: 6

Outcome Nos.: 7

Signature of HOD

Signature of faculty

Date: 22.09.16.

Date:

TUTORIAL SHEET - 5

Academic Year	: 2018-19	Γ	Date: 04.10.16.
Semester	:I		
Name of the Program	B.Tech IV Year:	Section:A &B	
Course/Subject: HVD	C TRANSMISSION		
Name of the Faculty: I	DR.S.V.JAYARAM KUMAR, M.REKHA		Dept.: EEE
Designation	: Professor, Assistant professor.		

This Tutorial corresponds to Unit No. V

Q1. What are the various sources of harmonics generation in a HVDC line? Describe how a double tuned filter can be designed for a HVDC system.

Q2. How is Total Harmonic Distortion estimated in a circuit? Explain the relevance of THD to a HVDC system.

Q3. Explain the effect of firing angle errors on non characteristic harmonics.

Please write the Questions / Problems / Exercises which you would like to give to the students and also mention the Objectives/Outcomes to which these Questions / Problems / Exercises are related.

Objective Nos.: 5

Outcome Nos.: 6,7

Signature of HOD

Signature of faculty

Date:

EVALUATION STRATEGY

Academic Year	: 2018-19			
Semester	: I			
Name of the Program: B.7	Гесh IV Year:	Secti	ion:A&B	
Course/Subject: HVDC T	RANSMISSION			
Name of the Faculty: DR.	S.V.JAYARAM KUM	AR, M.REKH	А	Dept.:EEE
Designation	:Professor, Assistant pr	rofessor.		
1. TARGET:				
A) Percentage for pass: 100b) Percentage of class: 95)			
 2. COURSE PLAN & CON PPT presentation of 				
3. METHOD OF EVALUA	TION			
3.1 Continuous Assess	sment Examinations (CAI	E-I, CAE-II)		
3.2 Assignments/Sem	inars			
3.3 🗆 Mini Projects				
3.4 🗌 Quiz				
3.5 Semester/End Exa	amination			
3.6 🗌 Others				

Signature of HOD

Department of Electrical & Electronics Engineering

Academic Year: **2018-19** Year: **IV** Semester: **I** MID Exam – I (Descriptive) HVDC TRANSMISSION Code: GR15A4024

Date: /09/2018 Duration: **90 min** Max Marks: **20**

Answer any four questions. All questions carry equal marks

1. Discuss the advantages and disadvantages of HVDC transmission

2.Draw twelve pulse diagram of HVDC station and discuss various components related to the system.

3. Derive the rectifier output voltage equation as a function of delay angle and overlap angle.

4.Draw the equivalent circuit of rectifier and inverter with relevant equations.

5. What is meant by commutation failure?

6. Why control is necessary for HVDC system? Explain.

Academic Year: 2018-19	MID Exam – I (Objective)	Date: /09/2018
Year: IV	HVDC Transmission	Duration: 30 min
Semester: I	Code: GR15A4024	Max Marks: 05

Roll No.										
----------	--	--	--	--	--	--	--	--	--	--

Note: Answer all the questions. All questions carry equal marks.

1.In a monopolar system usually the pole is

(a)Positive and Negative (b)Positive (c)Negative (d)Alternatively positive and negative

2. The break-even distance is the distance beyond which

(a)DC transmission is economical (b)AC transmission is economical (c) cost of both systems are the same (d) both(b) and (c).

3. The first HVDC scheme in India is

(a)Vidhyachal back-to-back system (b)Delhi-Rihand 500kV system(c)Chandrapur-Padghe scheme(d)Sileru-Barsoor system.

4.12-pulse converters are used in modern converters because of

(a)reduced current (b)reduced ripple (c)increased voltage and reduced harmonics (d)both(b) and (c)

5. The output voltage of a converter is changed by varying

(a) α (b) μ (c) γ (d)any one α, μ, γ

Fill in the blanks

1.HVDC transmission line commercially began in the year-----.

2.Modern HVDC system are all-----pulse converters.

3. Coolant used in thyristor/IGBT valves is-----.

- 4. In a bipolar system one conductor is-----and the other is -----.
- 5.IGBT converters operate on the principle of ------ source converter.

Academic Year: **2018-19** Year: **IV** Semester: **I** MID Exam – II (Descriptive) HVDC TRANSMISSION Code: GR15A4024

Date: /10/2018 Duration: **90 min** Max Marks: **15**

Answer any three questions. All questions carry equal marks

1.Obtain the equation for harmonics for 12-pulse converter. Also discuss the impact of harmonics on the system. (CO5)

2.What is meant by individual phase control used for firing the HVDC valves. Explain with neat diagram. (CO4)

3. Explain the significance of earthing in HVDC system. (CO6)

4. Discuss the various faults exist in Converter Station. (CO7)

Department of Electrical & Electronics Engineering

Academic Year: 2018-19	MID Exam – II(Objective)	
Year: IV	HVDC Transmission	Date: /10/2018
Semester: I	Code: GR15A4024	Duration: 30 min
Roll No.		Max Marks: 05
Note: Ansv	ver all the questions. All questions carry equa	I marks.
1.Commutation failure occurs	usually in	[]
(a)Rectifiers (b)Inverters (c)B	oth inverters and rectifiers (d)controllers	
2.In HVDC-VSC schemes filt	ers are used	[]
(a)only on the AC side (b) onl	y on the DC side (c)both AC and DC side (d)no filter is needed.
3.During commutation in a co	nverter	[]
(a)voltage is exchanged (b)cur blocked(d)none of the above.	rent is transformed from one valve to the o	ther(c)DC voltage is
4. Power transfer in DC line d	epends on	[]
(a)sending and receiving end v resistance(d)none of the above	voltages (b)number of pulses in the rectifier	c(c)line
5. VDCOL controlling is done	and is necessary when	[]
) to regulate DC current depending on DC current when DC voltage dips (d) to regular	•
6.In a 12-pulse converter, the	phase difference between the two 6-pulse b	ridges is
7. If pulse number =p and k is	an integer, voltage harmonic generated on	the DC side is
8. Most frequent type of faults	in DC system is	
9. Increase in pulse number ha (True/False)	s the effect of increasing the lowest harmon	nic number
10. Advantage of DC link for pow	ver transfer is more economical(True/False)	

IV B.Tech-(HVDC) I Sem I Mid Marks(2018-19)

S.NO	1 (CO1)	2 (CO3)	3 (CO2)	4 (CO1)
15241A0261	4	3		5
15241A0262				
15241A0263	3			
15241A0264	4	2		2
15241A0265	4	4	4	
15241A0266	5	1		4
15241A0267	5	2		4
15241A0268	5	2		3
15241A0269	2	4		1
15241A0270	4	2		
15241A0271	5	5		5
15241A0272	5	5		5
15241A0273	5	2		5
15241A0274	0	0	0	0
15241A0275	5	2		4
15241A0276	3	2		
15241A0277	5		5	4
15241A0278	3	1	2	
15241A0279	3	3		2
15241A0280	4	4		
15241A0281	4	3		3
15241A0282	4	3	5	4
15241A0283	3	2		
15241A0284	4	2		5
15241A0285	5	2		4
15241A0286	4	3		
15241A0287	4	4		
15241A0288	3	1	2	
15241A0289	4	2		5
15241A0290				
15241A0291	3	2		
15241A0292	5		5	5
15241A0293	5	4	2	
15241A0294	3	3		
15241A0295	5	2		5
15241A0296		2		4
15241A0297	5	2		4
15241A0298	4	2		
15241A0299	2		3	3
15241A02A0	2			1

Department of Electrical & Electronics Engineering

15241A02A1	2	2		2
15241A02A2		3		
15241A02A3	3	2		3
15241A02A5	3		3	3
15241A02A6	3			2
15241A02A7	3	3		4
15241A02A8				
15241A02A9	4	2		3
15241A02B0	3	2		1
15241A02B1	5	2		4
15241A02B2	3			
15241A02B3	5		5	5
15241A02B4	5	2		
15241A02B5	3	2		4
15241A02B6	5	5		5
15241A02B7	5	2		5
15241A02B8	5		5	4
15241A02B9		5		5
15241A02C0	4	2		5
16245A0213	5	1		5
16245A0214	3	5		3
16245A0215	2	2		1
16245A0216	4	2		
16245A0217	5	5		5
16245A0218	3	2		
16245A0219	4	2		3
16245A0220	2	2		1
16245A0221	5	4		2
16245A0222	4	2		2
16245A0223		2	3	
16245A0224	4	2		1
Total	245	148	44	165
No of students attempted(NSA)	64	58	13	48
Attempt %=(NSA/Total no of students)*100	90.14	81.69	18.31	67.61
Average (attainment)= Total/NSA	3.83	2.55	3.38	3.44
Attainment % = (Total/no.of max marks*no.of students attempted)*100	76.56	51.03	67.69	68.75
	1	2	3	4
	1 (CO1)	2 (CO3)	3 (CO2)	4 (CO1)

001	70 (5
CO1	72.65
CO2	67.69
CO3	51.03
CO4	
CO5	
CO6	
CO7	

S.NO	1 (CO5)	2 (CO4)	3 (CO6)	4 (CO7)
15241A0261		5		2
15241A0262				
15241A0263				
15241A0264	5			2
15241A0265		4	3	1
15241A0266	5		1	2
15241A0267	5	5		5
15241A0268	4	5		3
15241A0269	2	1		1
15241A0270	5	5	1	
15241A0271	1			3
15241A0272	5	5		1
15241A0273	5	5		3
15241A0274	5			1
15241A0275	5	5		5
15241A0276	1	5		3
15241A0277		5	1	5
15241A0278	2		1	1
15241A0279		5	1	
15241A0280	5		1	3
15241A0281	5	5		4
15241A0282	5	5		5
15241A0283	5		1	3
15241A0284	5	5		5
15241A0285	5	5	5	
15241A0286	2		1	1
15241A0287	1		1	2
15241A0288			1	2
15241A0289		5	1	2
15241A0290	2			2
15241A0291		3	1	
15241A0292	5	5		5
15241A0293	3	5		5
15241A0294	1	3		
15241A0295	4	5		
15241A0296	1	5		
15241A0297	5	5		5
15241A0298	3	5		4
15241A0299	2		2	
15241A02A0			1	3
15241A02A1	5	5		3
15241A02A2	5			4

IV B.Tech-(HVDC) I Sem II Mid Marks(2018-19)

Department of Electrical & Electronics Engineering

15241A02A4	5	3		4
15241A02A5	3		1	
15241A02A6		5		2
15241A02A7	5	5		4
15241A02A8	5	5		4
15241A02A9		5	3	
15241A02B0		3	2	3
15241A02B1	5	5		2
15241A02B2		5		5
15241A02B3	5	5		5
15241A02B4	5	5	3	
15241A02B5	5	5		4
15241A02B6	5	5	5	
15241A02B7	5	5		5
15241A02B8	5	5		3
15241A02B9	5			3
16245A02C0	5			4
16245A0213			1	4
16245A0214		5	5	3
16245A0215	5	5	1	
16245A0216	5	4		
16245A0217	5	5		3
16245A0218			2	1
16245A0219	5		5	4
16245A0220			1	4
16245A0221	5	4		1
16245A0222		2	1	3
16245A0223	4		1	4
16245A0224	5		1	4
Total	216	212	55	175
No of students attempted(NSA)	52	46	30	55
Attempt %=(NSA/Total no of students)*100	73.24	64.79	42.25	77.46
Average (attainment)= Total/NSA	4.15	4.61	1.83	3.18
Attainment % = (Total/no.of max marks*no.of students attempted)*100	83.08	92.17	36.67	63.64
	1	2	3	4
	1 (CO5)	2 (CO4)	3 (CO6)	4 (CO7)

CO1	
CO2	
CO3	
CO4	92.17
CO5	83.08
CO6	36.67
CO7	63.64

Cognitive Level Mapping

Co's	Cog	nitive	level	learn	ing	
	1	2	3	4	5	6
1		V				
2			V			
3				٧		
4						V
5				٧		
6		V				
7					V	

Cognitive Learning Levels

- CLL 1: Remembering
- CLL 2: Understanding
- CLL 3: Applying
- CLL 4: Analyzing
- CLL 5: Evaluating
- CLL 6: Creating

		ge DC Transmission	Systems	
Time: 3	hours An-	f and Electronics Engl wer any FIVE question withins cavry equal me	Max Marks:	18
15. H.	What are the different applied detail.	ations of D.C Transmis	aion Sympos' Ceptain three in	101
h.	With next also hers explain th	he different kinds of D.	C Links wonitable.	171
23. a	Draw the schematic cleast a principle of operation.	lingram of a 6-Pulse G	REATZ Circuit and explain its	191
ь	Explain in detail, with the he i) Firing Angle Control	dp of meat diagrams ii) Careent and Exter	ution Angle Control	171
31. 11	Explain the merits of Consta	ant Current Control over	e Constant Voltage Cantrol	191
16	Write the Mathematical Mo-	del of a D.C. Converter.		17)
4), 0	Broadly classify the HVDC their causes and effects on a	Faulty and explain all is operation.	peaultic Converter Faults with	6 191
- 11	What are the basic principle	n of Over Cament Proto		171
5). a	What do you understand by Fourier Analysis, obtain so the Converter System.	r "characteristic torms expression for ath hart	enter" in HVDC System" Usir musile voltage on the D C side (of 15
ь	What are the various types Station? Discuss them in d	of Filters that are emplored.	ayed in HVDC Convertor	17
6), #	Briefly explain the followin i) Shunt Capacitors	ag aources of Reactive ii) Synchro	Power mmn Condensers	P
h	Explain the effect of Source	e Inductance on HVD0	C System	1
7) #	Write short notes on i) Corona affects on	D.C Line	ii) Radio Interference	1
	Discuss the Design of Sing	de Yaned Filters		

Department of Electrical & Electronics Engineering

(311)	(Aller)	
P	GR II SET - 3	
heart 3	IV. B. Tuch I Semester Regular Leanningtons, Nov(Dec 2016 High Voltage DC Transmission Systems, (Electrical and Electronics Engineering) Asswer say FIVE questions All questions tarry squat marks	

00	Discuss the renterminal factors that focus HVDC Transmission.	945
0	What are the descents of trainer as	171
1)()	Explains the to-pulse Greate Cincuit and derive the expressions for average DC voltage with delay angle (iii).	1101
٢	Distinguish between firing night datas and extension angle of an HVDC Converter	19
23.0	Explain the causes of searcive power absorbed by HVDC Converter Substation.	[8]
	Classify the solution methodology for AC-DC load flow and explore-	m
400	What are the reasons to DC and AC System Faults?	191.
0	Explain in detail shout the mega anomore used in HVDC Transmission System.	121
20	Last out problems associated with the injection of harmonics both on AC and DC side of HVDC Link	[N]
۲	Diseases the Design of High Pass Felines for HVDC System.	(17)
-0	Explain the various apparatus required for HVDC Station and explain the purpose σ such.	1 (94)
٢	Explain the firing angle control scheme for HVDC Symm.	m
73 8	Explain the per unit system for DC Quantities.	[8]
h	Mention the configurations and impedance characteristics of oneions types of Filter	s 381

Department of Electrical & Electronics Engineering

FEEDBACK FROM STUDENTS

Summation of Teacher Appraisal by Student Academic Year 2018-19

M Rekha
933
EEE
IV/I/A
2018-19
HVDCT
33/69

Average rating on a scale of 4 for the responses considered:

S. No	Questions of Feedback	Average
1	How do the teacher explain the subject?	3.20000000000000002
2	The teacher pays attention to	3.140000000000000000
3	The Language and communication skills of the teacher is	3.14000000000000000
4	Is the session Interactive?	3.22000000000000002
5	Rate your teacher's explanation in clearing the doubts	3.10000000000000000
6	Rate your teachers commitment in completing the syllabus	3.259999999999999998

7	Rate your teachers punctuality	3.319999999999999998
8	Rate your teachers use of teaching aids	3.12000000000000000
9	Rate your teacher's guidance in other activities like NPTEL, Moodle, Swayam, Projects.	3.0800000000000000
10	What is your overall opinion about the teacher?	3.1800000000000002

Þ

Net Feedback on a scale of 1 to 4: 3.176000000000000

Department of Electrical & Electronics Engineering

Gokaraju Rangaraju Institute of Engineering & Technology (Autonomous)

> Summation of Teacher Apprairal by Student Academic Year 2018-19

Name of the Instructor	Dr.5.V Jayaram Kumar
Faculty ID	1291
Branch	111
Class and Semester/Section	IV/11/B
Academic Year	2018-19
Subject Title	HVDCT
Total No. of Responses/class strength	28/71

Average rating on a scale of 4 for the responses considered:

No	Questions of Feedback	Average		
1	How do the teacher explain the subject?	3.037777777777777777		
	The seacher pays attention to	8.055555555555555		
3	The Language and communication skills of the teacher in	3.111111111111111111111		
	Is the session Interactive?	2.944444444444444		
	Rate your teacher's explanation in clearing the doubts	3.02777777777777777777777		
	Rate your teachers commitment in completing the syllabus	3.055555555555555		
	Rate wood teachers punctuality	3.2400000000000000		
	Rate your teachers use of teaching aids	3 120000000000000		
W	Rate your teacher's guidance in other activities like NPTLL_Moodle, Swayam, Projects.	2.9156666666666666		
	What is your overall opinion about the teacher?	3		

Department of Electrical & Electronics Engineering

RESULT ANALYSIS

	Total	Total	No. of	GRA	GRADE	GR	GRA	GRA	GRA	GRA	PASS
Year	No.	No. of	Stude	DE	=9	AD	DE=	DE=	DE=	DE=	PERCE
	Of	Stude	nts	=10		E=	7	6	5	4	NTAG
	Studen	nts	Failed			8					E(%)
	ts	Passe									
	appear	d									
	ed										
2018-19	140	132	08	16	18	16	17	38	22	05	94.28
								-			
2017-18	124	121	03	35	32	54					97.58
				(<60	(60-	(>7					
				%)	70%)	0%					
)					
2016-17	140	130	10	31	42	57					92.85
				(<60	(60-	(>7					
				%)	70%)	0%					
)					

- The network of transmission and distribution lines is formed by three phase alternating current system.
- For longer lines and higher power transfer, higher transmission voltages are necessary.
- The Electrical Power System (Network) is formed by a 3 phase, 50 Hz, AC System with several AC voltage levels for generation, transmission, distribution and utilisation.
- Choice of transmission voltage depends on power and distance.

•AC power transformers are installed in various transmission and distribution substations and near load points to step-up or step down AC Voltages to required levels.

•The entire AC Network operates synchronously at common prevailing frequency (50 Hz, ± 3%).

•3 Phase AC System has a tendency to operate naturally in synchronism and the operation and control is very easy.

• Power transfer through an AC transmission link is given by

$$Pac = \frac{|V_1| \cdot |V_2|}{X} \sin \delta$$

In an AC Network AC Power transfer through a particular AC line cannot be controlled easily, quickly and accurately.

- The sin $\boldsymbol{\delta}$ causes transient stability limit which is almost 50% of steady state limit.
- Reactive power flow causes additional (I² Rt) transmission losses and voltage regulation problems.

•For very long, high power transmission lines (> 800km;> 1000 MW), for System Interconnections between two or more independently controlled AC Networks (Regional Grids) and for long submarine cables.

•

•High Voltage Direct Current Transmission (HVDC) links are preferred due to technical and economic superiority over equivalent EHV AC transmission links for same power/distance.

•Nominal Power transfer through an HVDC Link is given by:

$P_{dc} = U_d \cdot I_d = [(U_d) - U_{d2})/R] U_d$

•The H VDC power transfer can be controlled quickly and accurately by thyristor control and tap changer control.

•There are no problems of reactive power flow, voltage fluctuations and high transmission losses.

•However HVDC voltages cannot be easily stepped up or stepped down.

• HVDC requires costly and complex substations, high

technology, complex controls.

•The Modern TransmissionNetwork continues to be of 3 phase 50 Hz, AC System with a few specific HVDC links integrated with the 3 phase AC Network.

•HVDC links are considered only for specific projects such as :

• A few long high power, point to point, 2 terminal HVDC Transmission Systems. (e.g. ± 500 kV, 1500

MW, 820 km, Rihand-Deihi Bipolar 2T HVDC System (UP, India, 1992): ± 500 MW 1500 MW, 850 km Chandrapur-Padaghe Bipolar 2T HVPC System (Maharashtra, India, 1997)

• Back to Back Interconnecting HVDC Coupling Systems between Regional Grids (e.g. Vindhyachal sack-to-Back, 500 MW Link between Western Region and Northern Region, India (1989); Chandrapur Back-to-Back, 1000 MW Link between Western Region and Southern Region, India, 1996)

- Multi-terminal HVDC Interconnecting Systems (e.g. 5-Terminal Hydro-Quebeck : New England, USA/Canada, 1987-96)
- High Voltage long high power Cable transmission. (e.g. UK? France submarine Link, 2000 MW, 65 km).

• First commercial High Voltage Direct Current transmission system (HVDC) was introduced during 1953.

- With the successfully development of high power thyristor valves in early 1970's, the HVDC transmission systems have become a technically and commercially viable alternative to EHVAC transmission particularly for (1) long distance bulk power transmission; (2) Submarine cable transmission and (3) system interconnection.
- For these three applications HVDC transmission systems have a distinct superiority over EHVAC and are being increasingly preferred.

Choice of a Transmission System

• The choice of the voltage is made from HVAC, EHV-AC, HVDC on the basis of the following economical and technical considerations.

Economic Considerations

- Capital cost of transmission systems:
 - Cost of line conductors, towers, insulators, installation land/right of way.
 - Capital cost of substations, intermediate substations, compensating substations, conversion substations, substation equipment like transformers, switchgear; substation area, buildings.
 - Cost of energy losses, maintenance.
 - Needs of future expansion and associated cost.
 - Economic aspects telated with availability, reliability.
 - Economic strategy for Energy Transmission.

Technical Considerations

• Length of the transmission line and total power to be transferred

- Control over Power Transfer, magnitude, rate of change.
- Existing network and long term plans.
- Choice of voltage considering power flow.
- Stability considerations related with power flow and frequency disturbances.
- Reliability and security of power flew. Availability of transmission link.
- Reactive power compensation and voltage control.
- Switching requirement.
- Right of way for transmission lines.
- Radial or Mesh.
- 21' or 31' or MT.
- Type of line :

Overhead/underground/submarjne cables.

• Network configuration, parallel lines, T-offs, multi-terminals etc.

Application of EHV-AC Transmission

- Voltage can be stepped-up or stepped-down in transformer substations to have economical transmission voltage.
- Lines can be tapped easily, extended easily.
- Parallel lines can be easily added.
- Control of Power flow in the Network is simple and natural.
- Power flow in a particular line cannot be controlled easily and quickly.
- Equipments are simple and reliable without need of high-tech.
- Operation is simple and adopts naturally to the synchronously operating AC systems.
- Generation and distribution is by AC.

Special Features and Technical Consideration for EHVAC Lines

• The most important requirement of an EHV-AC transmission line is power transfer ability based on transient stability limit.

$$Pac = \frac{|V_1| \cdot |V_2|}{X} \sin \delta$$

at δ = 30°, sin δ = 0.5. Hence AC line can transfer only 50% of its steady state power limit.

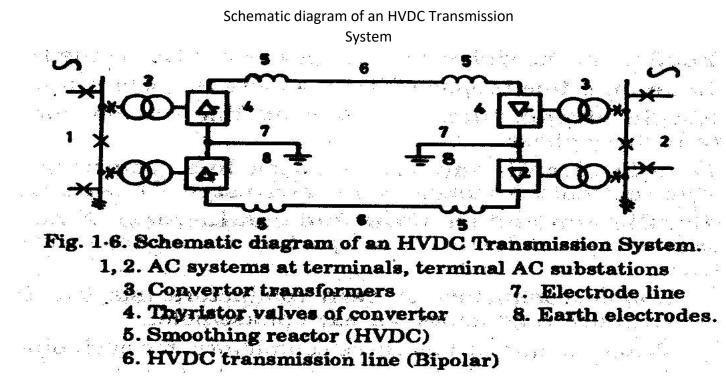
• EHV-AC line needs compensation of reactive power. This is provided by SVS ; shunt reactors, Shunt capacitors, etc. installed in substations. Intermediate substations are necessary at interval of 250 km to 400 km.

• Power transfer ability of EHV lines may be increased by using series capacitors or adding a parallel line. For high power lines several parallel circuits may be necessary.

• The line design is based on limits of corona, radio interference, TV interference, electrical field at ground level, etc.

• For EHV-AC lines the voltage stress at conductor surface should be kept below critical voltage. For achieving this, the use of bundled conductors is essential. Bundle conductors reduce the corona losses, Radio Interference, TV Interference.

• Switching surges occur during opening and closing f unloaded lines. Line insulation is designed on the basis of switching overvoltages. Appropriate circuit-breakers and compensation is necessary to limit switching surges. Insulation co-ordination is achieved with the use of suitable surge arresters.


• EHV-AC lines and Network have high short-circuit levels and associated protection problems. HVDC interconnection limits the short-circuit levels of both the AC networks.

• EHV-AC lines experience power swings during system disturbances, switching and faults. Protection of EHV-AC lines is designed to block during low power swings.

• EHV-AC lines transmit bulk power. Outage of a line causes stability problems in the network. Hence alternative transmission paths should be planned along with the protection system design. For each radial line, at least two three phase circuits are, necessary.

 In large interconnected networks, the effect of a major fault in one of the networks can result in cascade tripping and a large scale blackout To prevent this the Network Segregation is carried out. HVDC interconnection eliminates the problem of cascade tripping. Applications of HVDC transmission

- Long distance high Power transmission by overhead lines.
- Medium and long high power submarine or underground cables.
- System interconnection by means of overhead lines or underground/submarine cables or back to back HVDC coupling stations.
- Multi-Terminal HVDC System for interconnecting three or more 3 phase AC systems.
- Frequency conversion (60 Hz —50 Hz ; 50 Hz —25 'Hz)
- Incoming lines in megacities.

- An HVDC link has an AC system at each end.
- The AC power is converted by thyristor-convertor valves into DC power.
- The energy is transmitted in HVDC form to the other end.

•At the other end the DC power is inverted in thyristor-convertor valves and fed into the receiving system.

•An 2-Terminal HVDC transmission system has an HVDC convertor substation at each end and an HVDC transmission line in between.

• In case of back-to-back coupling station, the rectifier and inverter are at the same place and there is no HVDC line.

•A back-to-back HVDC station provides an asynchronous tie between two adjacent AC Networks.

Choice of HVDC Transmission System

• Long, high power transmission

• For long distance, high power transmission lines HVDC transmission systems are preferred due to their economic advantage and exact, fast and easy control of power flow from generating station to load centre.

- Though HVDC system needs costly terminal substations, the line cost is lower than that of equivalent AC line.
- Power flow can be controlled.
- Line losses are low.
- The per km cost of HVDC line is lesser than that of an equivalent 3 phase double circuit AC line.

• For equal power transfer, the number of conductors for 3 phase AC line is 6 to 24 as against only 2 numbers required for Bipolar HVDC line.

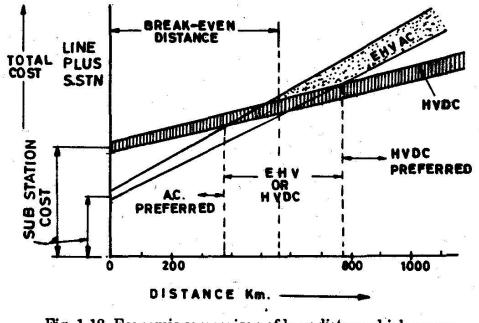


Fig. 1.12. Economic comparison of long distance high power HVDC transmission and EHV-AC transmission.

•System Interconnections

- Neighbouring independently controlled AC Networks are interconnected by system interconnections.
- System interconnection is either by EHV-AC/HVAC or HVDC.
- The basic function of an **interconnection** is to transfer energy from surplus zone to deficit zone.

• When neighbouring AC Networks are connected by and AC interconnection they start operate synchronously at the same frequency. AC interconnection is called synchronous tie.

• When neighbouring AC Networks are interconnected by HVDC interconnection, they can continue to have their independent load frequency control.(Asynchronous tie)

•System interconnection has following major

- **E** Lesser overall installed capacity to meet the peak demand.
- Lesser spinning reserves.
- 2 Overall economic generation by optimum use of high capacity economical generating plants.
- Better use of energy reserves such as hydro, thermal, nuclear.
- Better system support to week network.
- Better system support to network having emergency due to outage of a plant or a line.
 Stronger grid with stable frequency.^{advantages.}

EHV-AC interconnection:

It is simple.

²Power flow adapts naturally to the needs and ²prevailing surplus deficit between interconnected networks.

[□]Voltages and connections can be made suitably[□]by using transformer connection.

The limitations of EHV-AC interconnections include:

It is synchronous tie.

[□]Frequency disturbance in one zone is quickly[□]transferred to the other.

Power swings in one network affect the other Inetwork. A weak tie link gets tripped due to such power swings.

□Large interconnected networks suffer from □cascade tripping. and overall black-outs in the event of major faults in any of the network.

HVDC interconnections:

It is an asynchronous tie.

[□]Frequency disturbance from one AC Network is[□]not transferred to the other.

Direction and magnitude of power flow can be changed quickly and accurately by controlling the characteristics of rectifier/ inverter.

^IPower swings and frequency disturbances in ^IConnected AC Network can be quickly dampened by modulating the power flow through the HVDC interconnection.

☑HVDC link can be used for interconnecting

HVDC link can be used for interconnection between two networks separated by sea or lake by using submarine cables.systemshaving different frequencies.

• Back-to-back asynchronous tie sub-stations

• In back-to- back HVDC coupling stations the interconnection is by a converter- substation without any transmission line.

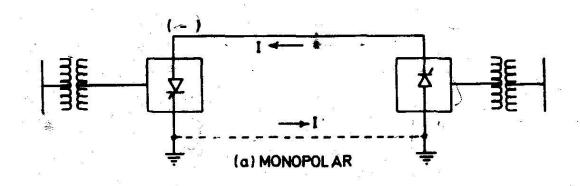
• The HVDC inverter and rectifier are installed

in the same station.

•Such a tie-link gives an asynchronous interconnection between two adjacent independently controlled AC networks.

• Multi-terminal HVDC Interconnection

- •Three or more AC networks can be interconnected asynchronously by means of a multi-terminal HVDC system.
- •Power flow from each connected AC Network can be controlled suitably.
- •Large power can be transferred.
- •Overall stability can be improved.

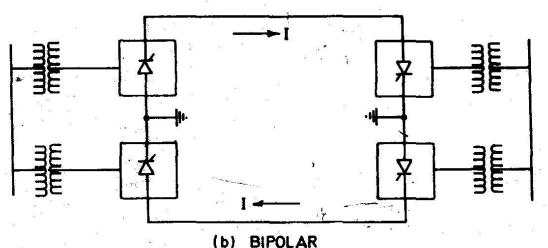

• Cable Transmission

- HVDC is preferred for underground or submarine-cable transmission over long distance at high voltage.
- The submarine cables are necessary to transfer power across oceans, lakes etc.
- In case of AC cables, the temperature rise due to charging currents forms a limit for loading.

• For each voltage rating there is a limit of length beyond which an AC cable cannot be used to transfer load current due to thermal limit.

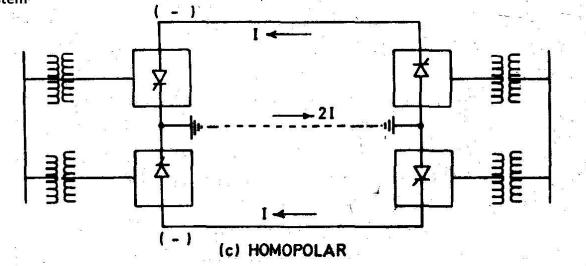
• HVDC cables have no continuous charging currents and can transfer bulk power over long distances. **Types of HVDC Systems**

Monopolar HVDC system


- This system has, only one pole and the return path is provided by permanent earth or sea.
- The pole generally has negative polarity with respect to the earth.
- In monopolar HVDC system the full power and current is transmitted through a line conductor with earth or sea as a return conductor.
- The earth electrodes are designed for continuous full- current operation and for any overload capacity required in the specific case.
- The sea or ground return is permanent and of continuous rating.
- Monopolar HVDC systems are used only for low power rated links and mainly for cable transmission.

Bipolar HVDC Transmission

•This is most widely used of overhead long distance HVDC systems, for point-to-point power transfer.


•The HVDC substation and HVDC line has two poles, one positive and the other negative with respect to earth.

- The mid points of convertors at each terminal station are earthed via electrode line and earth electrode.
- Power rating of one pole is about half of bipole power rating.

(b) BIPOLAR
 During fault or trouble on one of the poles, the bipolar HVDC system is switched over automatically to monopolar mode.
 Thereby, the service continuity is maintained.

Homopolar HVDC System

•In such a system two transmission poles are of the same polarity and the return is through permanent earth.

- •Two homopolar overhead lines feeding to a common monopolar cable termination.
- One overhead transmission tower carrying insulator strings supporting two homopolar transmission line conductors.

• Applications of homopolar transmission are limited.

Limitations of HVDC Transmission Systems

- HVDC system does not have step-up and step-down transformers.
- HVDC system does not have suitable HVDC circuit breakers.
- HVDC Transmission cannot be used economically for main transmission, subtransmission, distribution. It is used only for specific long distance/cable/interconnection projects.
- Cost of HVDC terminal substations is very high.
- Operation of HVDC transmission required continuous firing of thyristor valves. Controls of HVDC are complex. Several additional abnormal conditions are possible on DC side and in controls.
- HVDC substation require additional harmonic filters and shunt capacitors.

Converter station

•The major components of a HVDC transmission system are converter stations where conversions from AC to DC (Rectifier station) and from DC to AC (Inverter station) are performed.

- •A point to point transmission requires two converter stations.
- •The role of rectifier and inverter stations can be reversed (resulting in power reversals) by suitable converter control.
- •The various components of a converter station are discussed below.

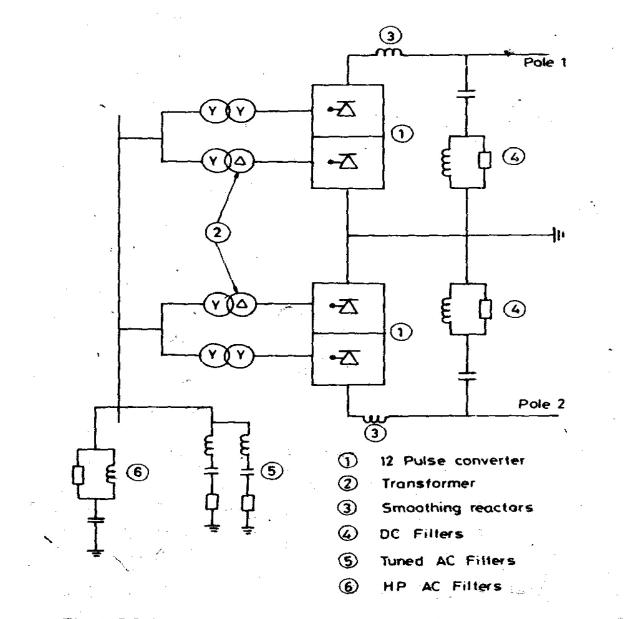


Fig. 1.5 Schematic diagram of a typical HVDC converter station.

Converter unit

•Each valve is used to switch in a segment of an AC voltage waveform.

•The converter is fed by

converter transformers connected in star/star and star/delta arrangements.

•The valves are cooled by air, oil, water or freon.

•Liquid cooling using deionized water is more efficient and results in the reduct or station losses.

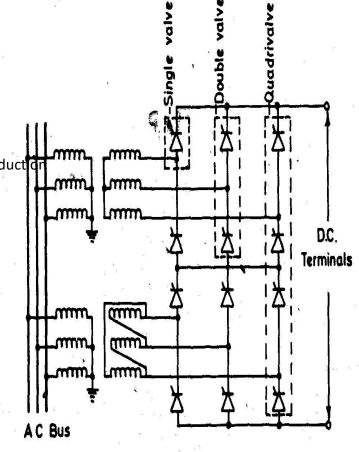


Fig. 1.6 A Twelve pulse converter unit

The ratings of a valve group are limited more by the permissible short circuit currents than steady state load

requirements.

•The design of valves is based on the modular concept where each module contains a limited number of sedes connected thyristor levels.

• Valve firing signals are generated in the converter control at ground potential and are transmitted to each thyristor in the valve through a fiber optic light

guide system.

•The light signal received at the thyristor level is converted to an electrical signal using gate drive

amplifiers with pulse transformers.

•The valves are protected using snubber circuits, protective firing and gapless surge arresters.

Converter Transformer

- The converter transformer can have different configurations (i) three phase, two winding,
 - (ii) single phase, three winding,
 - (iii) single phase, two winding.
- The valve side windings are connected in star and delta with neutral point ungrounded.
- On the AC side, the transformers are connected in parallel with neutral grounded .
- The leakage reactance of the transformer is chosen to limit the short circuit currents through any valve.
- The converter transformers are designed to withstand DC voltage stresses and increased eddy current losses due to harmonic currents.

•One problem that can arise is due to the DC magnetization of the core due to unsymmetric firing of valves

•In back to back links, which are designed for low DC voltage levels an extended delta configuration can result in identical transformers being used in twelve pulse converter units.

Filters

There are three types of filters used:

AC filters : These are passive circuits used to provide low impedance, shunt paths for AC harmonic currents.

Both tuned and damped filter arrangements are used. **DC filters :** These are similar to AC filters and are used for the filtering of DC harmonics.

High	frequency	(RFIPLC)	filters:	These	are
------	-----------	----------	----------	-------	-----

connected between the converter transformer and the station AC bus to suppress any high frequency currents.

Sometimes such filters are provided on high-voltage DC bus connected between the DC filter and DC line and also on the neutral side **Reactive power source**

- Converter stations require reactive power supply that is dependent on the active power loading.
- Fortunately, part of this reactive power requirement is provided by AC filters.

•In addition, shunt (switched) capacitors. synchronous condensors and static var systems are used depending on the speed of control desired.

Smoothing reactor

•A sufficiently large series reactor is used on DC side to smooth DC current and also for protection.

•The reactor is designed as a linear reactor and is connected on the line side, neutral side or at intermediate location.

DC switchgear

•This is usually a modified AC equipment used to interrupt small DC currents.

•DC breakers or metallic return transfer breakers (MRTB) are used, if required for interruption of rated load currents.

•In addition to the equipment described above, AC switchgear and associated equipment for protection and measurement are also part of the converter station.

EHV-AC Versus HVDC Transmission

• For backbone network.

Voltage can be easily stepped-up, stepped-down. The network has natural tendency to maintain synchronism. Load-frequency control is easy and simple. Network can be tapped at intermediate points to feed underlying subtransmission network.

• **Bulk power long distance transmission lines**. HVDC proves economical above breakeven point. Number of lines are less. No need of intermediate substations for compensation.

•Stability of transmission system.

HVDC gives asynchronous tie and transient stability does not pose any limit. Line can be loaded upto thermal limit of the line or valves (whichever is lower).

•Line loading.

The permissible loading of an EHV-AC line is limited by transient stability limit and line reactance to almost one third of thermal rating of conductors. No such limit exists in case of HVDC lines.

•Surge impedance loading.

Long ERV-AC lines are loaded to less than 0.8 Pn.

No such condition is imposed on HVDC line.

•Voltage along the line.

Long EHV lines have varying voltage along the line due to absorption of reactive power. This voltage fluctuates with load. Such a problem does not arise in HVDC line. EHV-AC line remains loaded below its thermal limit due to the transient stability limit. Conductors are not utilized fully.

Number of lines.

EHVAC needs at least two thr For AGdines and generally more for higher power. HVDC needs only one bipole line for majority of application.

Intermediate substations.

 $Pac = \frac{|V_1| \cdot |V_2|}{|V_1|} \sin \delta$ EHV-AC transmission needs intermediate substations at an interval of 300 km for compensation.

HVDC line does not need intermediate compensating substation.

Asynchronous tie.

System having different prevailing frequencies or different rated frequencies can be interconnected. HVDC link provides asynchronous tie. Frequency disturbance does not get tranferred large blackouts are avoided.

Better control.

Power flow through HVDC tie line can be controlled more rapidly and accurately than that of EHV-AC interconnector. HVDC-Power flow can be increased at a rate of 30 MW per minute. This is not possible with EHV-AC line.

Corona loss and radio interference.

For the same power transfer and same distance, the corona losses and radio interference of DC systems is less than that of AC systems, as the required d.c. insulation level is lower than corresponding a.c. insulation.

Power Transfer and Reactive Power.

The main difference between EHV-AC and HVDC transmission systems is in control of Real Power flow and Reactive Power Flow.

The AC line can be loaded up to transient stability limit which occurs at δ =30⁰ and is given by

$$Pac - \max = \frac{1}{2} \cdot \frac{|V_1| \cdot |V_2|}{X}$$

AC line power cannot be changed easily, quickly and accurately as $|V_1|$ and $|V_2|$ should be kept around rated voltage levels and angle δ cannot be changed easily.

Secondly, the series reactance and shunt reactance of AC line result in reactive power flow, voltage regulation problems and additional transmission losses due to reactive component of current.

$$Pdc = \frac{(Ud_1 - Ud_2)}{R} \cdot Ud$$

By varying $(U_{d1} - U_{d2})$ by means of thyristor converter control and tap-changer control; the power flow P_{dc} can be changed quickly, accurately and easily.

Secondly, HVDC transmission does not have series reactance and shunt reactance; reactive power flow. Hence voltage regulation problems and stability problems transmission losses etc. due to the flow of reactive power flow are absent in HVDC transmission systems. Transmission losses are low.

Skin effect.

This is absent in d.c. current. Hence current density is uniformly distributed across the cross-section of the conductor.

Charging current.

Continuous line charging currents are absent in HVDC lines. Reactive Power (MVAr) does not flow continuously. Hence transmission losses are low.

Tower size.

The phase-to-phase clearance, phase to ground clearances and tower size is smaller for d.c. transmission as compared to equivalent AC transmission for same power and distance. Tower is simpler, easy to install and cheaper.

Number of conductors.

Bipolar HVDC transmission lines require two-pole conductors to carry DC power. Hence HVDC transmission becomes economical over AC transmission at long distance when the saving in overall conductors cost, losses, towers etc. compensates the additional cost of the terminal apparatus such as rectifiers and converters.

Earth return.

HVDC transmission can utilize earth return and therefore does not need a double circuit. EHV-AC always needs a double circuit.

Reactive power compensation.

HVDC line does not need intermediate reactive power compensation like EHV-AC line.

Flexibility of operation.

Bipolar line may be operated in a monopolar mode by earth as a return path when the other pole develops a permanent fault.

Staging facility.

DC valves may be connected in series and parallel to get desired DC voltage and current. Multiterminal schemes are now possible.

Short-circuit level.

In AC transmission, additional parallel lines result in higher fault level at receiving end due to reduced equivalent reactance. When an exiting AC system is interconnected with another AC system by AC transmission line, the fault level of both he system increases. However, when both are interconnected by DC transmission, the fault level of each system remain unchanged.

Rapid power transfer.

The control of convertor valves permit rapid changes in magnitude and direction of power flow. Limitation is imposed by power generation and AC system conditions.

Static Power Conversion Adopted in HVDC Transmission

- A Bipolar HVDC transmission system has an HVDC terminal substation at each end. Each terminal substation has AC/DC convertor. The convertors change AC to DC or DC to AC.
- The convertor terminal operating in rectifier mode changes AC power to DC power. Delay angle **a** is held at 15 to 18°.

- The convertor terminal operating in inverter mode changes DC power to AC power. Extinction angle γ is held at 15 to 18°.
- The complete HVDC Tansmission transfers electric power from one AC Network to another AC Network in the form of high voltage direct current.

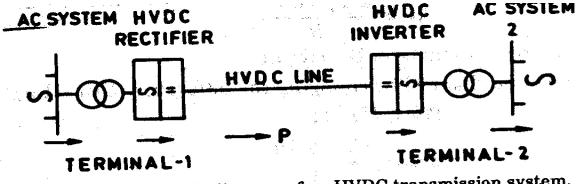
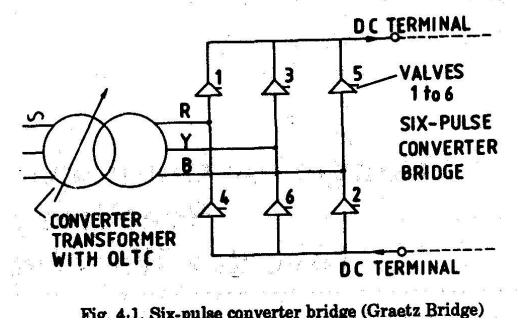


Fig 2.2 Schematic diagram of an HVDC transmission system.

The convertor has two types of circuits:

• Main circuit through which high power flows. This comprises convertor transformers, thyristor valves, busbars, series reactor etc.


•Control and protection circuits for firing/blocking the valves in desired sequence, monitoring etc.

Six Pulse Converter Bridge (Graetz Bridge)

•A 6-pulse bridge has 6 valves arranged or 3 limbs for the vertical valve structure.

•AC supply is given from the three secondary leads of a converter transformer.

•The six valves are fired in a definite sequence (1, 2,...6).

• At any instant, two values are conducting in the bridge, one from the upper commutation group and the second from the lower commutation group.

• The firing of the next value in a particular group results in the turning off of the value that is already conducting.

• The assumption is that there is no overlap between the two valves in a group.

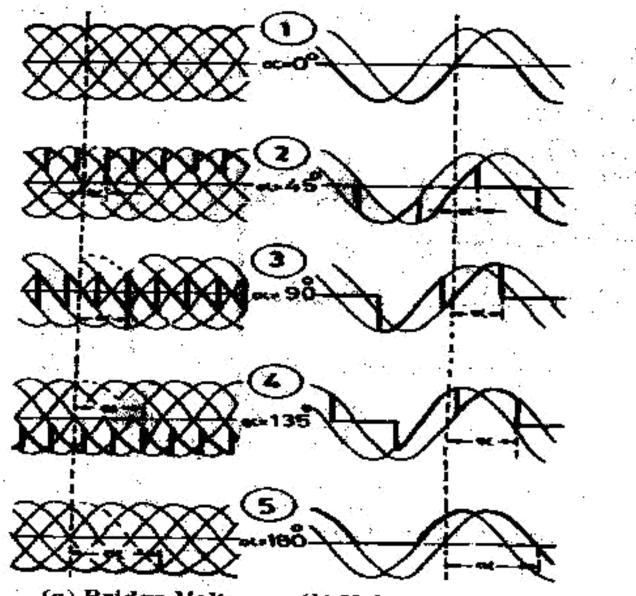
• Thus the value 2 is fired 60^0 after the firing of value 1 and value 3 is fired 60^0 after the firing of second value.

• Each value conducts for 120^{0} and the interval between consecutive firing pulse is 60^{0} in steady state.

Assumptions:

•The d.c current is constant.

•The valves can be modelled as ideal switches with zero impedance when **'ON'** and with infinite impedance when **'OFF'**.


• The AC voltages at the converter bus are sinusoidal and remains constant.

DC voltage waveform

• The increase in the delay angle α causes corresponding delay in transfer from one valve arm to another, resulting in reduction of mean direct voltage. It is assumed that a large smoothing is connected on the DC side.

• With $\alpha = 0^{\circ}$ the commutation takes place naturally and the convertor acts as a rectifier.

•With increase in μ the average value of DC voltage is reduced.

(a) Bridge Voltages (b) Valve voltages Fig. 4-11. Voltage waveforms for various values of α .

• When α becomes more than 60°, some negative spikes begin to appear in the DC voltage. i.e. the energy will flow from DC system to AC system through the convertor without change in the direction of current.

• For $\alpha = 90^{\circ}$. the area of positive portion of DC voltage spikes and negative portion of DC voltage spikes per cycle are equal. The mean value of DC voltage per cycle of AC wave is zero. The convertor is acting neither as rectifier nor as inverter. Energy transfer is zero.

• For α more than 90⁰, the negative pulses have more area than positive pulses, Mean value of DC voltage is negative i.e. the energy flows from DC system to AC systems indicating inversion mode.

• For $\alpha = 180^{\circ}$, Full inversion is obtained.

Valve Voltage

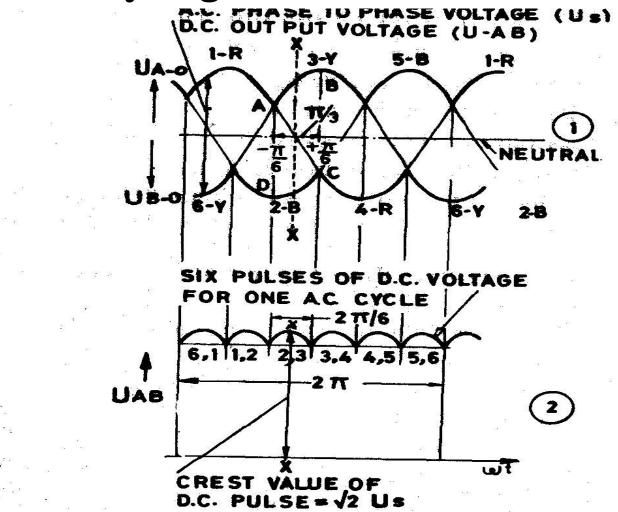
• When the valve is conducting, this voltage is zero.

• When valve is not conducting, and the other valve arm of the same group is conducting, the voltage across the non-conducting valve arm corresponds to phase to phase voltage of transformer secondary terminals.

Definition of Delay Angle . Delay angle α is the time expressed in electrical angle from the zero crossing(s) of the idealised sinusoidal commutating voltage and starting of forward current conduction(s).
It can be conveniently understood as the angle between the Instant of natural commutation (zero crossing) and instant of delayed commutation, (C).

•By delaying the triggering pulses, the duration of conduction a cycle is reduced, thereby the average value of DC voltage is reduced.

•By varying from zero to 90° elec., the no load direct voltage changes from maximum(at $\alpha = 0$) to zero (at = 90°).


•The following are noted: -

- • $\alpha = 0^{0}$ Rectifier mode maximum DC voltage • $\alpha = 15^{\circ}$ Rectifier mode reduced DC voltage • $\alpha = 90^{\circ}$ Rectifier mode No power transfer,
- Zero DC voltage
- • α > 90° Inverter mode
- • α = 180⁰ Full inverter mode.

- The limits of delay angle α are 0 to 45^0
- In practice, for normal rectifier operating mode, the delay angle α is held between 50 to 15°.
- The choice of α has two opposite constraints.
 - (1) The reactive power demand of convertor values reduces with reduction in delay angle α . Hence smaller value of α is preferred with respect to reactive power requirements (AC shunt compensation)

(2) But with smaller value of a the possibility of further increase in DC voltage on rectifier side is reduced.

No-load Voltage Equation for Rectifier with Zero Delay Angle

 Phase to phase, 3 ph, AC waveforms (2) Corresponding DC output voltage. Fig. 5.3. No load voltage waveforms of a single six-pulse convertor. Secondary phase-to-phase voltage between terminals A and B of a six-pulse convertor bridge .
It is a sinusoidal voltage with an equation

 $U_s = U_{sm} \cos \omega t$

•RMS value of the wave u_s , is equal to U_s , which corresponds to phase-to-phase secondary voltage of a convertor transformer which feeds a six-pulse convertor. The crest value (peak value) of the voltage waveform U_{sm} occurs at XX and is given by

$$U_{sm} = \sqrt{2} U_s$$

where

- U_{sm} = peak value of voltage U_{AB} occurring at XX.
 - $U_s = \text{rms}$ value of phase-to-phase secondary voltage
 - $\omega = 2\pi f$
 - f = frequency of AC wave.

•Integrating u s over segment ABCD between — $\pi/6$ and + $\pi/6$ as shown is Fig. and dividing by period $\pi/3$

$$Udo = \frac{1}{(\pi/3)} \int_{-\pi/6}^{+\pi/6} U_{sm} \cos \omega t \cdot d\omega t$$
$$= \frac{U_{sm}}{(\pi/3)} [\sin \omega t]_{-\pi/6}^{+\pi/6}$$
$$= \frac{3}{\pi} U_{sm} \left[\sin \left(\frac{\pi}{6} \right) - \sin \left(-\frac{\pi}{6} \right) \right]$$
$$Udo = \frac{3}{\pi} U_{sm}$$

where Udo = Direct voltage between terminals of a six-pulse convertor, average value, no-load

 U_{sm} = Crest value of secondary phase to phase voltage. Substituting,

$$U_{sm} = \sqrt{2} \cdot U_s \text{ in Eqn. (5.2),}$$
$$U_{do} = \frac{3}{\pi} \cdot \sqrt{2} \cdot U_s$$

where U_s = secondary, rms, phase to phase voltage

• This fundamental, important equation co-relates DC voltage with phase-to-phase secondary AC voltage for a six-pulse-bridge.

• For a six-pulse bridge

$$Udo = \frac{3}{\pi} \cdot \sqrt{2} \cdot U_s$$
$$Udo = 1.35 U_s$$

where U_{do} = No-load direct voltage with zero phase control, for a six pulse bridge

 U_s = Phase to phase rms voltage for secondary.

Rectifier Voltage Equations with No-Load and Delay Angle $\boldsymbol{\alpha}$

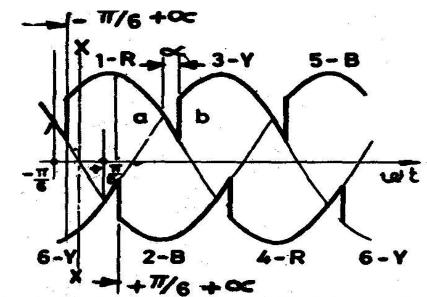


Fig. 5.4. Analysis of no-load voltage with delay angle α present (neglecting reactance drop and over-lap angle).

• The average value of DC voltage of a six-pulse convertor unit can be determined by finding average value of one segment between $(-\pi / 6+)$ and $(+\pi / 6+)$ with respect to peak phase to phase voltage at XX. • Each segment covers $\pi/3$ duration. Hence

$$Ud = \frac{1}{\frac{\pi}{3}} \int_{-\pi/6+\alpha}^{+\pi/6+\alpha} U_{sm} \cdot \cos \omega t \cdot d\omega t$$

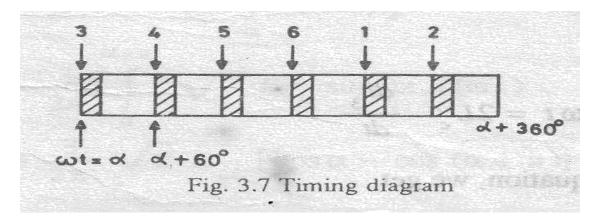
Where U_{sm} = Crest value of phase to phase AC secondary voltage

$$=\sqrt{2} U_s$$

- U_s = Secondary phase to phase rms voltage
- U_d = Direct voltage between terminals of one sixpulse unit operating at no load with delay angle α

$$Ud = \frac{3}{\pi} U_{sm} \left(2 \sin \frac{\pi}{6} \cdot \cos \alpha \right)$$
$$= \frac{3}{\pi} \cdot U_{sm} \cdot \cos \alpha$$
$$= \frac{3}{\pi} \cdot \sqrt{2} U_s \cos \alpha$$
$$Ud = \left(\frac{3}{\pi} \cdot \sqrt{2} \right) U_s \cdot \cos \alpha$$

Comparing with delay angle α we get


 $Ud = 1.35 U_s \cos \alpha$

 $Ud = Udo \cos \alpha$

- The Direct voltage with delay angle α is proportional to $\cos \alpha$.
- By increasing delay angle , the average DC voltage reduces.
- Maximum DC voltage occurs at a = 0 and is equal to U_{do}

Analysis of Graetz circuit with overlap

- Due to the leakage inductance of the converter transformers and the impedance in the supply network, the current in a valve cannot change suddenly.
- Thus commutation from one value to the next cannot be instantaneous.
- For example, when value 3 is fired, the current transfer from value 1 to value 3 takes a finite period during which both values are conducting.
- This is called overlap and its duration is measured by the overlap (commutation) angle **'µ'**.

•Each interval of the period of supply can be divided into two subintervals

•In the first subinterval, three values are conducting and in the second subinterval, two values are conducting. This is based on the assumption that the overlap angle is less than 60°.

•As the overlap angle increases to 60°, there is no instant when only two valves are conducting.

• As the overlap angle increases beyond 60⁰, there is a finite period during an interval, when four valves conduct and the rest of the interval during which three valves conduct.

Commutation

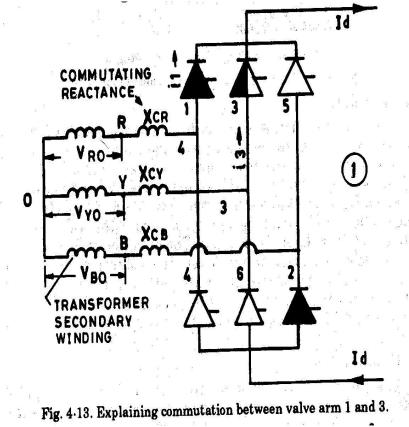
•The process of transfer of direct current from one path to another with both paths carrying currents simultaneously is called commutation.

•The commutation process takes place sequentially between two consecutive valve arms of group A connected to positive terminal.

• In forced commutation process, the commutating reactance of the load circuit of two valves undergoing commutaion causes the delay in the transfer from one path to another.

- •During commutation process, the current i_s outgoing valve arm(1) reduces from full value I_d to zero in a small time interval.
- \bullet During the same interval of time, the current of incoming valve arm(3) rises from zero to full value(I_d).
- The time interval during which both the incoming and outgoing valves are conducting is measured in terms of electrical radians or degrees and is called angle of overlap.

Commutating Reactance


• The commutating reactance is defined as the reactance of the circuit consisting of commutating arms and the commutating voltage source during the process of active commutation.

The commutating reactance reduces the steepness of the fall in current (i₁) in the outgoing valve arm.
The commutating reactance also reduces the steepness of rise of current (i₃) in incoming valve arm.
Without commutating reactance the current transfer from one path to another path would have been

instantaneous.

•But the transformer secondary winding has inherent reactance which prevents the step change in current.

• The commutating reactance is predominantly active due to the reactance of transformer winding.

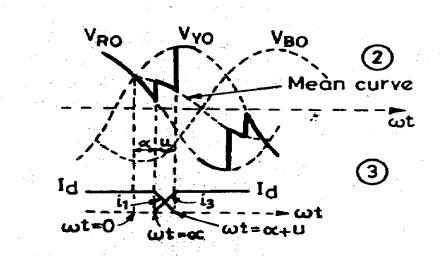
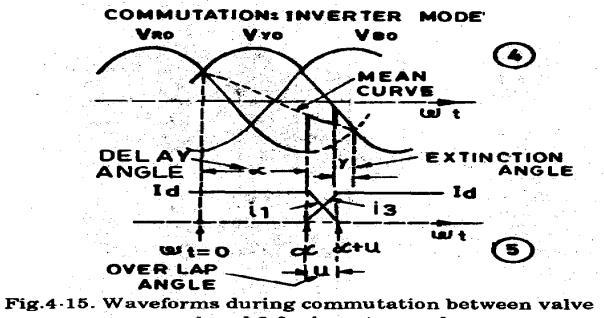



Fig. 4.14. Waveforms during commutation between valve arm 1 and 3 for rectifier mode.

arms 1 and 3 for inverter mode.

see 1

• The angle of overlap 'µ' appears due to voltage

drop in commutating reactance Xc.

- The path of i_s is through commutating reactances $2X_c$ offered by the secondary windings and the conducting path.
- •The flow of i_s produces reactance voltage drop $i_s.X_c$ per phase.

•The waveform of mean voltage during commutation is shown in Fig.

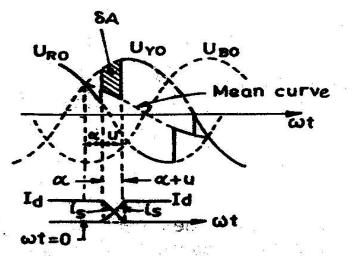


Fig. 5.6. Details of voltage waveform with delay angle α and overlap u for RECTIFIER MODE.

Voltage Equation.

Let v_s be the voltage between secondary phases which is responsible for commutating current i_s .

$$v_s = U_{sm} \sin \omega t$$

 $v_s = \sqrt{2} U_s \sin \omega t$

Where U_{sm} = peak secondary ph. to ph. voltage U_s = rms, ph. to. ph. secondary voltage From basic circuit fundamentals, we know

$$L \frac{di}{dt} = v$$

In the local circuit of current i_s total inductance is $2L_c$ and current i_s .

$$2L_c \frac{di}{dt} = v_s = \sqrt{2} U_s \sin \omega t$$
$$di_s = \frac{\sqrt{2} U_s}{2L_c} \cdot \sin \omega t \cdot dt$$

Where L_c = Inductance of commutating circuit per phase.

Integrating both sides,

$$i_s = \frac{\sqrt{2} U_s}{2L_c} \cdot \frac{\cos \omega t}{\omega} + C$$

Substituting initial condition, i.e. at wt = α ; i_s =0

$$C = \frac{U_s}{\sqrt{2} \omega L_c} \cdot \cos \alpha$$

Therefore,

$$i_s = \frac{U_s}{\sqrt{2} \omega L_c} \cdot (\cos \alpha - \cos \omega t)$$

Substituting final commutating condition, i.e. at wt = α +u; $i_s = I_d$

$$I_d = \frac{U_s}{\sqrt{2} \omega L_c} \cdot [\cos \alpha - \cos (\alpha + u)]$$

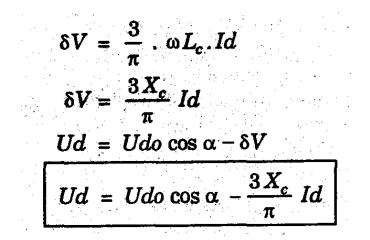
There is a small voltage drop due to area $\mathbf{\delta}$ A between α and $+ \mathbf{\mu}$ as shown in Fig.

$$\delta A = \frac{1}{2} \int_{\alpha}^{\alpha+u} \sqrt{2} U_s \sin \omega t \, d\omega t$$
$$= \frac{\sqrt{2}}{2} \left[U_s \cos \omega t \right]_{\alpha}^{\alpha+u}$$
$$= \frac{U_s}{\sqrt{2}} \left[\cos \alpha - \cos \left(\alpha + u \right) \right]$$

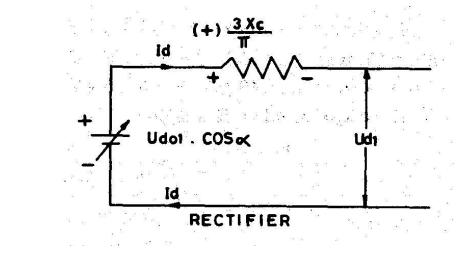
Average value of voltage drop during the period $\pi/3$ is

$$\delta V = \frac{\delta A}{\pi/3}$$

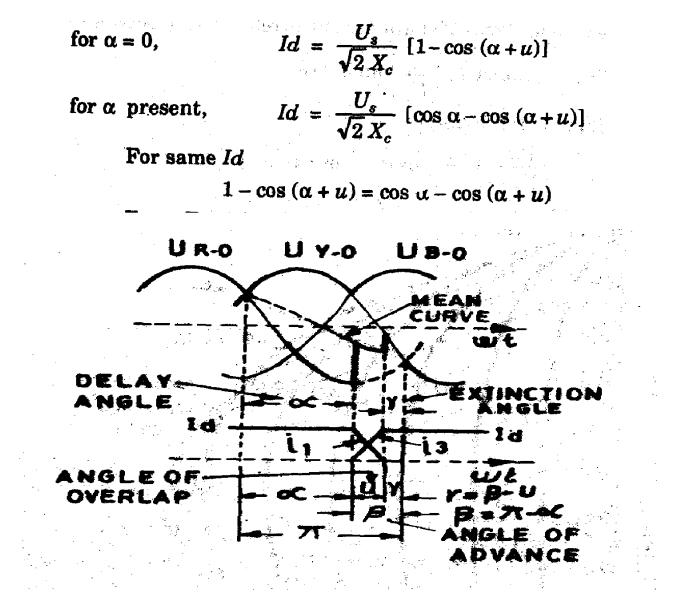
$$= \frac{3}{\pi} \cdot \frac{U_s}{\sqrt{2}} \left[\cos \alpha - \cos \left(\alpha + u \right) \right]$$


$$\frac{3U_s}{\sqrt{2}\pi} = \frac{Udo}{2}$$

$$\delta V = \frac{Udo}{2} \left[\cos \alpha - \cos \left(\alpha + u \right) \right]$$


 $Ud = Udo \cdot \cos \alpha - \delta V$ = Udo $\cos \alpha - \frac{Udo}{2} [\cos \alpha - \cos (\alpha + u)]$ $= \frac{Udo}{2} \left[\cos \alpha + \cos \left(\alpha + u \right) \right]$ $\frac{Ud}{Ud\alpha} = \frac{1}{2} \left[\cos \alpha + \cos \left(\alpha + u \right) \right]$ where U_{do} = No load direct voltage U_d = Direct voltage on load with delay α angle ' ' and overlap angle ' μ '. Therefore, $Id = \frac{U_s}{\sqrt{2}X_c} \left[\cos \alpha - \cos \left(\alpha + u \right) \right]$

where $X_c = 2\pi f L_c = w L_c$


 $\delta V = \frac{3}{\pi} \cdot \frac{U_s}{\sqrt{2}} \left[\cos \alpha - \cos \left(\alpha + u \right) \right]$

Equivalent Circuit of Rectifier

Extinction angle, Angle of advance

Definitions

1. Delay angle ^{*Q*} The time expressed in electrical angular measure from zero crossing of idealised sinusoidal commutating voltage to starting instant of forward current.

2.Angle of Advance. Time expressed in electrical angular measure from starting of current to zero crossing of idealised sinusoldal commutating voltage.

3.Relation between and.

 $\beta = \pi - \alpha$

4.Angle of overlap u. Time during which two consecutive convertor arms carry current simultaneously.

5. **Extinction angle** (Margin angle). Time from end of current conduction to zero crossing of idealized commutating sinusoidal voltage.

6. Relationship between , μ, .

 $\gamma = \beta - u$